  Question

The values of $${K}_{{p}_{1}}$$ and $${K}_{{p}_{2}}$$ for the reactions:(i)  $$X \rightleftharpoons Y + Z$$                   (ii) $$A \rightleftharpoons 2B$$They are in the ratio $$9 : 1$$. Assuming degree of dissociation of $$X$$ and $$A$$ be same, the dissociation pressure at equilibrium (i) and (ii) are in the ratio :

A
36:1  B
1:1  C
3:1  D
1:9  Solution

The correct option is C $$36 : 1$$                         $$X \ \ \ \rightleftharpoons \ \ \ Y \ \ + \ \ \ Z$$                     $$1 - \alpha$$           $$\alpha$$          $$\alpha$$For (i) $${K}_{{p}_{1}} = \displaystyle\frac{{n}_{Y}\cdot {n}_{Z}}{{n}_{X}} \displaystyle\frac{{p}_{1}}{{\left[\sum{n}\right]}_{1}} = \displaystyle\frac{{\alpha}^{2}}{\left(1 - \alpha\right)}\cdot \displaystyle\frac{{P}_{1}}{\left(1 + \alpha\right)}$$                         $$A\ \ \ \rightleftharpoons \ \ \ \ 2B$$                      $$1 - \alpha$$           $$2\alpha$$For (ii) $${K}_{{p}_{2}} = \displaystyle\frac{{\left({n}_{B}\right)}^{2}}{\left({n}_{A}\right)}\times \displaystyle\frac{{P}_{2}}{{\left[\sum{n}\right]}_{2}} = \displaystyle\frac{4{\alpha}^{2}}{\left(1 - \alpha\right)}\cdot \displaystyle\frac{{P}_{2}}{\left(1 + \alpha\right)}$$$$\displaystyle\frac{{K}_{{p}_{1}}}{{K}_{{p}_{2}}} = \displaystyle\frac{{\alpha}^{2}\times {P}_{1}}{\left(1 - \alpha\right)\times \left(1 + \alpha\right)}\times \displaystyle\frac{\left(1 - \alpha\right)\left(1 + \alpha\right)}{4{\alpha}^{2}\times {P}_{2}}$$$$\displaystyle\frac{{P}_{1}}{{P}_{2}} = \displaystyle\frac{4\times 9}{1} = \displaystyle\frac{36}{1}$$Chemistry

Suggest Corrections  0  Similar questions
View More  People also searched for
View More 