44x2−120xy+25y2+619x−272y+663=0(12x−5y)2=272y−619x−663
Introducing a variable λ
(12x−5y+λ)2=272y−619x−663−10λy+24λx+λ2(12x−5y+λ)2=(272−10λ)y−(619−24λ)x+λ2−663
12x−5y+λ=0......(i)(272−10λ)y−(619−24λ)x+λ2−663=0......(ii)
For λ we assume both lines to be perpendicular
m=−12−5=125
m′=−−(619−24λ)(272−10λ)=(619−24λ)(272−10λ)
mm′=−1125×(619−24λ)(272−10λ)=−17428−288λ=50λ−1360⇒λ=26(12x−5y+26)2=(272−10×26)y−(619−24×26)x+(26)2−663(12x−5y+26)2=5x+12y+13(12x−5y+2613)2=113(5x+12y+1313)Y=12x−5y+2613,X=5x+12y+1313Y2=113X
Comparing with the standard equation of parabola y2=4ax, we get
4a=113a=152
The focus of the parabola is obtained by solving X−a=0 and Y=0
5x+12y+1313−a=05x+12y+1313−152=020x+48y+51=0........(iii)12x−5y+2613=012x−5y+26=0........(iv)
Solving (iii) and (iv)
we get x=−1503676 and y=−23169
So the focus is (−1503676,−23169)