The correct option is
A True
Let the chord be y−4=m(x−3)
or mx−y+(4−3m)=0 .............(1)
AP=AQ=5
∴5=2√(r2−p2)
Circle is x2+y2−6x−74y=0
C is (3,78)andr=258
3m−78+4−3m
∴p=3m−78+4−3m√1+m2=258√1+m2
Hence from (1), we get
254=(258)2−(258)2⋅1(1+m2)
or 16(m2+1)=25m2∴m=±4/3
Hence from (1) the lines are 4x−3y=0 and 4x+3y−24=0.
Alternative method :
On dividing by 4,the circle is
(x−3)2+(y−78)2=(258)2 ............(1)
Any line through (3,4) is
y−4=tanθ(x−3) .........(2)
or x−3cosθ=y−4sinθ=r=5forPorQ
(5cosθ+3,5sinθ+4) is the other extremity of chord which will lie on the circle (1).
∴(5cosθ)2+(5sinθ+258)2=(258)2
or 25+1254sinθ=0
This gives sinθ=−45∴cosθ=±35.
Hence tanθ=±43=m
Putting for tanθ in (2), the required lines are 4x=3y and 4x+3y−24=0.