Byju's Answer
Standard XII
Mathematics
Second Fundamental Theorem of Calculus
n→∞ lim 12+22...
Question
l
i
m
n
→
∞
1
2
+
2
2
+
3
2
+
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
+
n
2
n
3
is equal to -
A
∞
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
D
1
3
l
i
m
n
→
∞
1
2
+
2
2
+
3
2
+
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
+
n
2
n
3
=
l
i
m
n
→
∞
n
(
n
+
1
)
(
2
n
+
1
)
6
n
3
=
l
i
m
n
→
∞
(
1
+
1
n
)
(
2
+
1
n
)
6
=
2
6
=
1
3
Suggest Corrections
0
Similar questions
Q.
Evaluate:
lim
n
→
∞
(
1
2
+
2
2
+
3
2
+
.
.
.
+
n
2
)
[
1
+
2
+
.
.
.
+
n
]
(
1
3
+
2
3
+
3
3
+
.
.
.
+
n
3
)
Q.
l
i
m
n
→
∞
1
2
+
2
2
+
3
2
+
.
.
.
.
.
+
n
2
n
3
=
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Q.
Evaluate:
lim
n
→
∞
[
1
n
3
+
2
2
n
3
+
3
2
n
3
+
…
+
n
2
n
3
]
Q.
What is
lim
n
→
∞
1
+
2
+
3
+
.
.
.
.
+
n
1
2
+
2
2
+
3
2
+
.
.
.
.
n
2
equal to?
Q.
lim
n
→
∞
(
1
2
1
−
n
3
+
2
2
1
−
n
3
+
.
.
.
.
+
n
2
1
−
n
3
)
is equal to
View More
Related Videos
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Explore more
Second Fundamental Theorem of Calculus
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app