wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using integration, find the area bounded by the lines x+2y=2, yx=1 and 2x+y=7

Open in App
Solution

Given lines are x+2y=2 ...(1)
y+2x=7 ...(2)
yx=1 ...(3)

I) x+2y=2
x0 2
y10
(0,1);(2,0)

II) 2x+y=7
x0 72
y 70
(0,7);(72,0)

III) yx=1
x0 1
y 10
(0,1);(1,0)

Now, we find points of intersection
1) (I) and (II)
x+2y=2,y+2x=7
y=72x

x+2[72x]=2

x+144x=2

3x=214=12

x=123=4

y=72(4)=78=1

point A(4,1)

2) (II) and (III)
y+2x=7, yx=1
y=x+1

x+1+2x=7

3x=6

x=2

y=2+1=3

Point B(2,3)

3) (I) and (III)
x+2y=2, yx=1
y=x+1

x+2[x+1]=2

x+2x+2=2

3x=0

x=0

y=0+1=1

Point C(0,1)

We draw graph [Ref. image]
To find shaded tregion
ar(ABC)

=20yCBdx+24yBA.dx04yAC.dx

=20(x+1)dx+20(72x)dx04(2x2)dx

=[x22+x]20+[7x2x22]2412[2xx22]04

=[222+2][o22+0]+[7(2)2(2)22][7(4)2(4)22]12[2(0)022]+12[2(4)422]

=[2+2][0]+[144][2816]12[0]+12[88]

=4+1012+0

=1412

=2sq.units


1344520_1126347_ans_1a7f0b78ebe1495b870a6bb400cb4995.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What Is an Acid and a Base?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon