  Question

Water flows at the rate of $$10m/minute$$ through a cylindrical pipe $$5mm$$ in diameter. How long would it take to fill a conical vessel whose diameter at the base is $$40cm$$ and depth $$24cm$$?

Solution

Radius of the pipe $$=\dfrac{5}{2}\ mm=\dfrac{5}{2}\times\dfrac{1}{10}\ cm=\dfrac{1}{4}\ cm$$Speed of water $$=10 m/min=1000\ cm/min$$Volume of water that flows in 1 minute $$=\pi r^2h$$                                                                 $$=\dfrac{22}{7}\times\dfrac{1}{4}\times\dfrac{1}{4}\times1000$$                                                                 $$=\dfrac{1375}{7}\ cm^3$$Radius of conical vessel $$=\dfrac{40}{2}=20\ cn$$Depth $$=24\ cm$$So,Capacity of the vessel $$=\dfrac{1}{3}\times\pi r^2h$$                                      $$=\dfrac{1}{3}\times\dfrac{22}{7}\times20\times20\times24$$                                      $$=\dfrac{70400}{7}\ cm^3$$Therefore,Time required to fill vessel $$=\dfrac{Capacity\ of\ the \ vessel}{Volume\ of\ water\ flowing\ per\ minute}$$                                              $$=\dfrac{70400/7}{1375/7}$$                                             $$=\dfrac{265}{5}\ minutes$$                                             $$=51\ min\ 12\ sec$$Mathematics

Suggest Corrections  1  Similar questions
View More  People also searched for
View More 