Question

# What is the area of the minor segment of a circle of radius 14 cm , when the angle of the corresponding sector is 60∘

A
(3083493) cm2
B
(3203503) cm2
C
49 cm2
D
3083 cm2

Solution

## The correct option is A (3083−49√3) cm2Given that , radius of circle (r ) = 14 cm Angle of the corresponding sector. i.e central angle (θ)=60∘ ∵ In Δ AOB OA=OB=Radius of circle ∴Δ AOB is isosceles. ⇒∠OAB=∠OBA=θ Now, in Δ OAB ∠AOB+∠OAB+∠OBA=180∘ [Since , sum of interior angles of any triangle is 180∘] ⇒60∘+θ+θ=180∘    [given,∠AOB=60∘] ⇒2θ=120∘ ⇒θ=60∘ i.e ∠AOB=∠OBA=60∘=∠AOB Since, all angles of ΔAOB are equal to 60∘. So, ΔAOB is an equilateral triangle. Also, area of  ΔAOB =√34×(14)2 [∵Area of an equilateral triangle=√34(side)2]    =√34×196 =49√3 cm2 Area of sector OBAO =πr2360∘×θ          =227×14×14360×60∘ =22×2×146 =22×143 =3083 cm2 ∴ The area of the minor segment  = Area of sector OBAO - Area of the equilateral triangle =(3083−49√3) cm2Mathematics

Suggest Corrections

0

Similar questions
View More

People also searched for
View More