Which of the following f(x) bounds the same area with corresponding g(x) :
A
f(x)=x2−1 , g(x)=1−(1−x)2 with x-axis.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f(x)=[x]sin−1x, , g(x)=[2x]cos−12x with x axis.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f(x)=|sinx| , g(x)=sin3x, where x∈[0,10π]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f(x)=|cosx| , g(x)=sin2x, where x∈[0,10π]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Af(x)=x2−1 , g(x)=1−(1−x)2 with x-axis. f(x)=x2−1 and g(x)=1−(1−x)2 1∫−1f(x)dx=23−2=−43
Area =43 g(x)=1−(1−x)2=2x−x22∫0g(x)dx=[x2−x33]20=43
So area will be same.
f(x)=[x]sin−1x, , g(x)=[2x]cos−12x with x axis.
For, f(x)=[x]sin−1x,x∈[−1,1] I1=1∫−1f(x)dx=0∫−1−sin−1xdx⇒I1=−1∫0sin−1xdx
Putting sin−1x=y⇒dx=cosydy ⇒I1=−π2∫0ycosydy⇒I1=[ysiny+cosy]−π20⇒I1=(π2−1)
g(x)=[2x]cos−12x,x∈[−12,12] I2=12∫−12g(x)dx=−0∫−1/2cos−12xdx
Putting cos−12x=y⇒dx=−12sinydy ⇒I2=12π2∫πysinydy⇒2I2=[−ycosy+siny]π2π⇒2I2=1−π⇒I2=1−π2
Area under g(x) will be π−12
Both areas are different.
f(x)=|sinx| , g(x)=sin3x, where x∈[0,10π]
From the graph we can see that there areas cannot be equal.
f(x)=|cosx| , g(x)=sin2x, where x∈[0,10π] 10π∫0f(x)dx=20×π2∫0cosxdx=20 10π∫0g(x)dx=20×π2∫0sin2xdx⇒10π∫0g(x)dx=5π
So there area will not be equal