The correct options are
A The number of real solution of 2x2secx=1 is 1.
C The number of real solution of log2(4⋅3x−6)−log2(9x−6)=1 is 1
D tan(π8)+cot(π8)=2√2
2x2secx=1⇒secx=2−x2
We know that,
secx∈(−∞,−1]∪[1,∞)2−x2∈(0,1]
Therefore, they will be equal only when
secx=1, 2−x2=1⇒x=0
Hence, only one possible solution.
Given : 6x(23)y−3⋅2x+y−8⋅3x−y+24=0 and xy=2
Now,
2x+y⋅3x−y−3⋅2x+y−8⋅3x−y+24=0⇒(2x+y−8)(3x−y−3)=0⇒2x+y=8 or 3x−y=3⇒x+y=3 or x−y=1
Therefore, using xy=2 and x+y=3, we get
⇒x2−3x+2=0⇒x=1,2⇒(x,y)=(1,2), (2,1)
Using xy=2 and x−y=1, we get
⇒x2−x−2=0⇒x=−1,2⇒(x,y)=(−1,−2), (2,1)∴(x,y)∈{(1,2),(2,1),(−1,−2)}
Hence, the number of possible solutions is 3.
log2(4⋅3x−6)−log2(9x−6)=1⇒log2(4⋅3x−6)(9x−6)=1⇒4⋅3x−6=2(9x−6)
Assuming 3x=t, we get
⇒4t−6=2t2−12⇒t2−2t−3=0⇒(t−3)(t+1)=0⇒t=3 (t>0)∴x=1
tan(π8)+cot(π8)=(√2−1)+(√2+1)=2√2