Write in single exponent form:
(-2)5×b5
In (-2)5×b5, there are different bases but the exponents are same.
So, for any non-zero integers a,b where m is any whole number,
am×bm=abm
(-2)5×b5=[(-2)×(-2)×(-2)×(-2)×(-2)]×(b×b×b×b×b) (Here a=-2,b=b,m=5)
=[(-2)×b]×[(-2)×b]×[(-2)×b]×[(-2)×b]×[(-2)×b]
=-2×b5
=(-2b)5
Therefore, (-2)5×b5=(-2b)5.
(-p)8×(-q)8
a3×(-b)3
(-a)4×(-b)4
52×32
Write 126÷124 as a single exponent.