Write in single exponent form:
(-a)4×(-b)4
In (-a)4×(-b)4, there are different bases but the exponents are same.
So, for any non-zero integers a,b where m is any whole number,
am×bm=abm
(-a)4×(-b)4=[(-a)×(-a)×(-a)×(-a)]×[(-b)×(-b)×(-b)×(-b)] (Here a=-a,b=-b,m=4)
=[(-a)×(-b)]×[(-a)×(-b)]×[(-a)×(-b)]×[(-a)×(-b)]
=-a×-b4
=(ab)4 (-×-=+)
Therefore, (-a)4×(-b)4=(ab)4.
(-p)8×(-q)8
a3×(-b)3
52×32