The integral is given below as,
I= ∫ 5x ( x+1 )( x 2 −4 ) dx I= ∫ 5x ( x+1 )( x+2 )( x−2 ) dx
Use rule of partial fraction.
5x ( x+1 )( x+2 )( x−2 ) = A ( x+1 ) + B ( x+2 ) + C ( x−2 ) 5x=A( x 2 −4 )+B( x+1 )( x−2 )+C( x+1 )( x+2 )
Substitute x=2then,
C= 5 6
Substitute x=−1then,
A= 5 3
Substitute x=0then,
2A+B−C=0
Substitute and solve for B
B= −5 2
On integrating, we get
I= ∫ 5x ( x+1 )( x+2 )( x−2 ) dx = 5 3 ∫ dx x+1 − 5 2 ∫ dx x+2 + 5 6 ∫ dx x−2 = 5 3 log| x+1 |− 5 2 log| x+2 |+ 5 6 log| x−2 |+C