A Particle Moves With Constant Speed V Along A Circular Path Of Radius R And Completes The Circle In Time T. The Acceleration Of The Particle Is

As we know:

\( \vec{\Delta}s = \vec{\Delta}Q * \vec{\Delta}r\\\Rightarrow \frac{\vec{\Delta}s}{\Delta t} = \frac{\vec{\Delta}Q}{\Delta t} * \vec{\Delta}r \\\Rightarrow \vec{\Delta}v = \vec{\Delta}w * \vec{\Delta}r = \left | v \right | = wr \\\Rightarrow \vec{a} = \frac{d\vec{v}}{dt} (\vec{w} * \frac{d\vec{v}}{d\vec{t}}) + (\frac{d\vec{w}}{dt} * \vec{r})\)

w = \( \frac{dw}{dt} = 0\) \( \vec{a} = \vec{w} * \vec{v}\)

OR

a = w v

\( a = \frac{v}{r}, v = \frac{v^{2}}{r}, a = rw^{2}\\\Rightarrow a = rw^{2}\\\Rightarrow r\left [ \frac{2\Pi}{T} \right ]^{2}\\\Rightarrow r * \frac{4\Pi ^{2}}{T^{2}}\)

OR

a = v w

\( v * \frac{2\Pi }{T} \)

Explore more such questions and answers at BYJU’S.

Was this answer helpful?

 
   

0 (0)

(0)
(0)

Choose An Option That Best Describes Your Problem

Thank you. Your Feedback will Help us Serve you better.

Leave a Comment

Your Mobile number and Email id will not be published. Required fields are marked *

*

*

BOOK

Free Class

Ask
Question