We have to prove \(\sin (x+y)\sin (x-y)=sin^{2}x-sin^{2}y\)
Solution
Let us start with RHS
\(\sin (x+y)\sin (x-y)\)=\((sin x cos y+ cos x sin y)(sin x cos y – cos x sin y)\)
=\((\sin ^{2}x\cos ^{2}y-\cos ^{2}x\sin ^{2}y)\)
=\(\sin ^{2}x(1-\sin ^{2}y)-(1-\sin ^{2}x)\sin ^{2}y\)
=\(\sin ^{2}-\sin ^{2}y\)
= LHS
Hence Proved