We have to solve 1−sin2x=cosx−sinx
Solution
1−sin2x=cosx−sin x
(cosx−sin x) 2=cos x−sin x
So, cos x−sinx=1
tanx=1,
x=nπ+ π/4
cos x−sinx=1
and cos x−1=sinx
−2sin 2 (x/2) =2sin(x/2) cos (x/2)
sin (x/2)= 0 and x/2=n∏
x= 2n∏
so tan (x/2)=-1
x/2 = n∏ – ∏/4
x= 2n∏ – ∏/2