wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The general solution of sinθ+sin2θ+sin3θ+sin4θ=0?


Open in App
Solution

Given,

sinθ+sin2θ+sin3θ+sin4θ=0

By rearranging the expression, we get

(Sinθ+Sin3θ)+(sin2θ+Sin4θ)=0

(sinθ+sin3θ)+(sin2θ+sin4θ)=02.sin2θ.cosθ+2.sin3θ.cosθ=02.cosθ(sin2θ+sin3θ)=04.cosθ.sin5θ2.cosθ2=0

cosθ=0=cosπ2,θ=(n+12)π cosθ2=0=cosπ2θ2=n+12πθ=(2n+1)π sin5θ2=0=sin05θ2=θ=25

Hence, the general solution of sinθ+sin2θ+sin3θ+sin4θ=0 as shown above.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon