Assume that, I = ∫ sin4x dx
Now, reduce sin4x dx to integrate the function.
I = ∫ (sin2x)2 dx
As we know 2sin2x = 1 – cos2x,
Put (sin2x)2 = {(1 − cos2x) / 2}2
= ∫ {(1 − cos2x) /2 }2 dx
= (1/4) ∫ (1 − cos2x)2 dx
As, (a – b)2 = a2 – 2ab + b2
= (1/4) ∫ (1− 2cos2x + cos22x) dx .(1)
Again reduce the function cos22x to integrate the function,
As, cos2(2x) = (1 + cos(4x)) / 2 … (2)
Now, substitute the value (2) in (1), we get
= (1/4) ∫ [1 – 2cos2x + {(1 + cos(4x)) / 2 }] dx
Now, integrate the function, we get
= (1/32)(12x – 8 sin (2x) + sin (4x) )+C
On simplifying the above expression, we get
= (3/8)x + (1/32) sin(4x) − (1/4) sin(2x) + C
Therefore, the integral of sin4x dx = (3/8)x + (1/32) sin(4x) − (1/4) sin(2x) + C