RS Aggarwal Solutions Class 10 Trigonometric Identities

RS Aggarwal Solutions Class 10 Chapter 8

All these RS Aggarwal class 10 solutions Chapter 8 Trigonometric Identities are solved by Byju's top ranked professors as per CBSE guidelines.

Trigonometric Identities Exercise 8.1

Q.1: Without using trigonometric table, evaluate:

(i) \(\frac{ sin 16^{\circ} }{ cos 74^{\circ} }\)

Sol:

= \(\frac{ sin ( 90^{\circ} – 74^{\circ}) }{ cos 74^{\circ} }\)

= \(\frac{ cos 74^{\circ}}{ cos 74^{\circ} }\) [ \(Since, sin( 90-\Theta ) = cos\Theta\)] = 1

??

(ii) \(\frac{sec \; 11^{\circ}}{cosec \; 79^{\circ}}\)

Sol:

= \(\frac{sec ( 90^{\circ} – 79^{\circ})}{cosec\;79^{\circ}}\)

= \(\frac{cosec \; 79^{\circ}}{cosec \; 79^{\circ}}\) [latex]Since, sec( 90 – \Theta )=cosec \Theta[/latex] = 1

 

(iii) \(\frac{ tan \; 27 ^{\circ} }{ cot \; 63 ^{\circ} }\)

Sol:

= \(\frac{ tan( 90 ^{\circ} – 63^{\circ}) }{ cot \; 63 ^{\circ} }\)

= \(\frac{ cot \; 63^{\circ} }{ cot \; 63 ^{\circ} }\) [latex]Since, sin(90-\Theta )=cot\Theta[/latex] = 1

??

(iv) \(\frac{ cos \; 35^{\circ} }{ sin \; 55 ^{\circ} }\)

Sol:

= \(\frac{ cos( 90^{\circ} – 55^{\circ} ) }{ sin \; 55^{\circ} }\)

= \(\frac{ sin \; 55^{\circ} }{ sin \; 55^{\circ} }\) [ \(sin( 90 – \Theta ) = cos \Theta\) ] = 1

??

(v) \(\frac{ cosec \; 42 ^{\circ} }{ sec \; 48 ^{\circ} }\)

Sol:

= \(\frac{ cosec( 90 ^{\circ} ??? 48 ^{\circ} ) }{ sec \; 48 ^{\circ} }\) [ \(Since, sec( 90-\Theta )=cosec\Theta\) ] = 1

??

(vi) \(\frac{cot \; 38^{\circ}}{tan \; 52^{\circ}}\)

Sol:

= \(\frac{cot( 90^{\circ} – 52^{\circ})}{tan \; 52^{\circ}}\)

= \(\frac{tan \; 52^{\circ}}{tan \; 52^{\circ}}\) [\(Since, tan( 90 – \Theta ) = cot \Theta\) ] = 1

??

Q.2: Without using trigonometric tables, proves that:

(i) \(cos \; 81 ^{\circ} – sin \; 9 ^{\circ} = 0\)

Sol:

LHS = \(cos \; 81 ^{\circ} – sin \; 9 ^{\circ}\)

= \(cos ( 90 ^{\circ} – 9^{\circ} ) – sin 9 ^{\circ}\)

= \(sin 9 ^{\circ} – sin 9 ^{\circ}\) = 0

 

(ii) \(tan 71 ^{\circ} – cot 19 ^{\circ} = 0\)

Sol:

LHS = \(tan 71 ^{\circ} – cot 19 ^{\circ}\)

= \(tan( 90^{\circ} – 19^{\circ} ) – cot( 19 ^{\circ} )\)

= \(cot(19 ^{\circ} ) – cot ( 19 ^{\circ} )\) = 0 = RHS

 

(iii) \(cosec ( 80 ^{\circ} ) – sec ( 10 ^{\circ}) = 0\)

Sol:

LHS = \(cosec ( 80^{\circ} ) – sec( 10 ^{\circ} )\)

= \(cosec( 90 ^{\circ} – 10 ^{\circ}) – sec( 10 ^{\circ} )\)

= \(sec ( 10 ^{\circ} ) – sec ( 10^{\circ} )\) = 0 = RHS

??

(iv) \(cosec ^{2} ( 72 ^{\circ} ) – tan ^{2} ( 18 ^{\circ}) = 1\)

Sol:

LHS = \(cosec^{2} ( 72 ^{\circ} ) – tan ^{2}( 18^{\circ} )\)

= \(cosec ^{2} ( 90 ^{\circ} – 18 ^{\circ} ) – tan ^{2} ( 18 ^{\circ} )\)

= \(sec ^{2} ( 18^{\circ} ) – tan ^{2}( 18^{\circ} )\) = 1 = RHS

??

(v) \(cos ^{2} ( 75 ^{\circ} ) – cos ^{2}( 15 ^{\circ} ) = 1\)

Sol:

LHS = \(cos ^{2} ( 75 ^{\circ} ) – cos ^{2} ( 15 ^{\circ} )\)

= \(cos ^{2}( 90 ^{\circ} – 15^{\circ}) – cos ^{2} ( 15 ^{\circ} )\)

= \(sin ^{2} ( 15 ^{\circ} ) + cos ^{2} ( 15 ^{\circ} )\) = 1 = RHS

 

(vi) \(tan ^{2} ( 66 ^{\circ} ) – cot ^{2} ( 24 ^{\circ} ) = 0\)

Sol:

LHS = \(tan^{2}(66^{\circ}) – cot^{2}( 24 ^{\circ} )\)

= \(cot^{2}(24^{\circ})-cot^{2}(24^{\circ})\) = 0 = RHS

??

(vii) \(sin^{ 2 }( 48^{\circ} ) + sin ^{2} ( 42^{\circ}) = 1\)

Sol:

LHS = \(sin ^{2}(48 ^{\circ} ) + sin ^{2}( 42 ^{\circ} )\)

= \(sin ^{2} ( 90^{\circ} – 42 ^{\circ} ) + sin ^{2}(42 ^{\circ})\)

= \(cos ^{2} ( 42 ^{\circ} ) +sin ^{2} ( 42^{\circ} )\) = 1 = RHS

??

(viii) \(cos ^{2} ( 57 ^{\circ} ) – sin ^{2} ( 33 ^{\circ} ) = 0\)

Sol:

LHS = \(cos ^{2} ( 57 ^{\circ} ) – sin ^{2} ( 33 ^{\circ} )\)

= \(cos ^{2} ( 90 ^{\circ} – 33 ^{\circ} ) – sin ^{2} ( 33 ^{\circ} )\)

= \(sin ^{2} ( 33 ^{\circ} ) – sin ^{2} ( 33 ^{\circ} )\) = 0 = RHS

??

(ix) \(( sin 65 ^{\circ} + cos 25 ^{\circ} )( sin 65 ^{\circ} – cos 25 ^{\circ}) = 0\)

(ix) LHS = \(( sin 65 ^{\circ} + cos 25 ^{\circ} ) ( sin 65 ^{\circ} – cos 25 ^{\circ} )\)

= \(sin ^{2} ( 65 ^ {\circ} ) – cos ^{2}(25^{\circ})\)

= \(sin ^{2} ( 90 ^{\circ} – 25 ^{\circ} ) – cos ^{2} ( 25 ^{\circ} )\)

= \(cos ^{2} ( 25 ^{\circ} ) – cos ^{2} ( 25 ^{\circ} )\)

= \(cos ^{2} ( 65 ^{\circ} ) – cos^{2} ( 25 ^{\circ} )\) = 0 = RHS

 

Q.3: Without using trigonometric tables, prove that:

(i) \(sin 53 ^{\circ} cos 37 ^{\circ} + cos 53 ^{\circ} sin 37 ^{\circ} = 1\)

Sol:

LHS = \(sin 53 ^{\circ} cos 37 ^{\circ} + cos 53 ^{\circ} sin 37 ^{\circ}\)

= \(sin ( 90 ^{\circ} – 37 ^{\circ} ) cos 37 ^{\circ} + cos ( 90 ^{\circ} -37^{\circ})sin37^{\circ}\)

= \(cos 37 ^{\circ} cos 37 ^{\circ} + sin 37 ^{\circ} sin 37^{\circ}\)

= \(cos ^{2} 37 ^{\circ} + sin ^{2} 37 ^{\circ}\) = 1 = RHS

 

(ii) \(cos 54 ^{\circ} cos 36 ^{\circ} – sin 54 ^{\circ} sin 36^ {\circ} = 0\)

Sol:

LHS = \(cos 54 ^{\circ} cos 36 ^{\circ} – sin 54 ^{\circ}sin 36 ^{\circ}\)

= \(cos ( 90 ^{\circ} – 36 ^{\circ} ) cos 36 ^{\circ} – sin ( 90 ^{\circ} -36^{\circ} )sin 36 ^{\circ}\)

= \(sin 36 ^{\circ} cos 36^{\circ} – cos 36 ^{\circ} sin 36 ^{\circ}\) = 0 = RHS

??

(iii) \(sec 70 ^{\circ} sin 20 ^{\circ} + cos 20 ^{\circ} cosec 70 ^{\circ} = 2\)

Sol:

LHS = \(sec 70^{\circ} sin 20 ^{\circ} + cos 20 ^{\circ} cosec 70 ^{\circ}\)

= \(sec ( 90 ^{\circ} – 20 ^{\circ} ) sin 20 ^{\circ} + cos 20 ^{\circ} cosec ( 90 ^{\circ} – 20 ^{\circ})\)

= \(cosec 20 ^{\circ} \frac{ 1 } { cosec 20 ^{\circ} } + \frac{ 1 }{ sec 20 ^{\circ} } sec 20 ^{\circ}\) = 1 + 1= 2= RHS

??

(iv) \(sin 35 ^{\circ} sin 55 ^{\circ} – cos 35 ^{\circ} cos 55 ^{\circ} = 0\)

Sol:

LHS = \(sin 35^ {\circ} sin 55 ^{\circ} – cos 35 ^{\circ} cos 55 ^{\circ}\)

= \(sin 35^{\circ} cos ( 90 ^{\circ} – 55^{\circ} ) – cos 35 ^{\circ} sin ( 90 ^{\circ} -55^{\circ} )\)

= \(sin 35 ^{\circ} cos 35 ^{\circ} – cos 35 ^{\circ} sin 35 ^{\circ}\) = 0 = RHS

??

(v) \((sin 72 ^{\circ} + cos 18 ^{\circ} ) ( sin 72 ^{\circ} – cos 18 ^{\circ} ) = 0\)

Sol:

LHS = \((sin 72 ^{\circ} + cos 18 ^{\circ} ) ( sin 72 ^{\circ} – cos 18 ^{\circ} )\)

= \(( sin 72 ^{\circ} + cos 18 ^{\circ} ) ( cos ( 90 ^{\circ} – 72 ^{\circ})-cos 18 ^{\circ} )\)

= \(( sin 72 ^{\circ} + cos 18 ^{\circ} ) ( cos 18 ^{\circ} – cos 18 ^{\circ} )\)

= \((sin 72 ^{\circ} + cos 18 ^{\circ} ) ( 0 )\) = 0 = RHS

??

(vi) \(tan 48 ^{\circ} tan 23^{\circ} tan 42 ^{\circ} tan 67 ^{\circ} = 1\)

Sol:

LHS = \(tan 48 ^{\circ} tan 23 ^{\circ} tan 42 ^{\circ} tan 67 ^{\circ}\)

= \(cot ( 90^{\circ} – 48 ^{\circ} ) cot ( 90 ^{\circ} -23 ^{\circ} ) tan 42 ^{\circ} tan 67 ^{\circ}\)

= \(cot 42 ^{\circ} cot 67 ^{\circ} tan 42 ^{\circ} tan 67 ^{\circ}\)

= \(\frac{ 1 } { tan 42 ^{\circ} } \times \frac{ 1 }{ tan 67 ^{\circ}} \times tan 42 ^{\circ} \times tan 67 ^{\circ}\) = 1 = RHS

??

Q.4: Prove that:

(i) \(\frac{ sin 70 ^{\circ} } { cos 20 ^{\circ} } + \frac{ cosec20 ^{\circ} } { sec 70 ^{\circ} } – 2 cos 70 ^{\circ} cosec 20 ^{\circ} ??= 0\)

(i) LHS = \(\frac{ sin 70 ^ {\circ} } { cos 20 ^{\circ} } + \frac{ cosec 20 ^{\circ} }{ sec 70 ^{\circ} } – 2 cos 70 ^{\circ} cosec 20 ^{\circ}\)

= \(\frac{ sin 70 ^{\circ} }{ sin ( 90 ^{\circ} – 20 ^{\circ} ) } + \frac{ sec ( 90 ^{\circ} -20 ^{\circ} ) } { sec 70 ^{\circ} } – 2 cos 70 ^{\circ} sec ( 90 ^{\circ} – 20 ^{\circ} )\)

= \(\frac{ sin 70 ^{\circ} } { sin 70 ^{\circ} } + \frac{ sec 70 ^{\circ} }{ sec 70 ^{\circ} } -2 cos 70 ^{\circ} sec 70 ^{\circ}\)

= 1 + 1 ??? 2 * \(cos 70 ^{\circ} \times \frac{ 1 }{ cos 70 ^{\circ} }\)

= 2 ??? 2 = 0 = RHS

 

(ii) \(\frac{ cos 80 ^{\circ} }{ sin 10 ^{\circ} } + cos 59 ^{\circ} cosec 31^{\circ} = 2\)

Sol:

LHS = \(\frac{ cos 80 ^{\circ} }{ sin 10 ^{\circ} } + cos 59 ^{\circ} cosec 31 ^{\circ}\)

= \(\frac{ cos 80^{\circ} }{ cos ( 90^{\circ} – 10^{\circ})}+sin( 90^{\circ} – 59^{\circ})cosec 31^{\circ}\)

= \(\frac{cos80^{\circ}}{cos80^{\circ}}+sin31^{\circ}\;cosec31^{\circ}\)

= 1 + \(sin31^{\circ}\times \frac{1}{sin31^{\circ}}\)

= 1 + 1 = 2 = RHS

??

(iii) \(\frac{ 2 sin 68 ^{\circ} }{ cos 22 ^{\circ} } – \frac{ 2 cot 15 ^{\circ} }{ 5 tan 75 ^{\circ} } – \frac{ 3 \; tan 45 ^{\circ} \; tan 20 ^{\circ} \; tan 40 ^{\circ} \; tan 50 ^{\circ} \; tan 70 ^{\circ} } { 5 }\)

Sol:

LHS = \(\frac{ 2 sin 68 ^{\circ} } { cos 22 ^{\circ} } -\frac{ 2 cot 15 ^{\circ} } { 5 tan 75 ^{\circ}} -\frac{ 3 \; tan 45 ^{\circ} \; tan 20 ^{\circ} \; tan 40 ^{\circ} \; tan 50 ^{\circ} \; tan 70 ^{\circ} }{ 5 } = 1\)

= \(\frac{ 2 sin 68 ^{\circ} } { sin ( 90 ^{\circ} – 22 ^{\circ} ) } -\frac{ 2 cot 15 ^{\circ} }{ 5 cot ( 90 ^{\circ} – 75 ^{\circ} ) } – \frac{ 3 \times 1 \times cot ( 90 ^{\circ} – 20 ^{\circ} ) \times cot ( 90 ^{\circ} – 40 ^{\circ} ) \times tan 50 ^{\circ} \times tan 70 ^{\circ} }{ 5 }\)

= \(\frac{ 2 \; sin 68 ^{\circ} }{ sin 68 ^{\circ} } – \frac{ 2 cot 15 ^{\circ} }{ 5 cot 15 ^{\circ} } – \frac{ 3 \; cot 70 ^{\circ} \; cot 50 ^{\circ} \; tan 50 ^{\circ} \; tan 70 ^{\circ} }{ 5 }\)

= \(2 – \frac{ 2 } { 5 } – \frac{ 3 \times \frac{ 1 }{ tan 70 ^{\circ}}\times \frac{ 1 ??}{ tan 50 ^{\circ} } \times tan 50 ^{\circ} \times tan 70 ^{\circ} }{ 5 }\)

= \(2-\frac{ 2 } { 5 } -\frac{ 3 }{ 5 }\)

= \(\frac{10 – 2 – 3}{ 5 }\) = \(\frac{ 5 }{ 5 }\) = 1 = RHS

 

(iv) \(\frac{sin 18 ^{\circ} }{ cos 72 ^{\circ} } + \sqrt{ 3 }( tan 10 ^{\circ} \; tan 30 ^{\circ} \; tan 40 ^{\circ} \; tan 50 ^{\circ} ) = 2\)

(iv) LHS = \(\frac{ sin 18 ^{\circ} }{ cos 72 ^{\circ} } + \sqrt{ 3 }( tan 10 ^{\circ} \; tan 30 ^{\circ} \; tan 40 ^{\circ} \; tan 50 ^{\circ} )\)

= \(\frac{sin 18 ^{\circ} }{ sin ( 90 ^{\circ} – 72 ^{\circ})} + \sqrt{3} [ cot( 90^{\circ}-10 ^{\circ}) \times \frac{ 1 }{ \sqrt{ 3 } } \times cot ( 90 ^{\circ} – 40 ^{\circ} ) \times tan 50 ^{\circ} \times tan 80 ^{\circ} ]\)

= \(\frac{sin 18 ^{\circ} }{ sin 18 ^{\circ} } + \sqrt{ 3 }( \frac{ cot 80 ^{\circ} \times cot 50 ^{\circ} \times tan 50^{\circ}\times tan 80^{\circ}}{ \sqrt{ 3 } } )\)

= 1 + \(( \frac{ 1 }{tan 80 ^{\circ}} \times \frac{ 1 }{ tan 50 ^{\circ} } \times tan 50^{\circ} \times tan 80 ^{\circ})\)

= 1 + 1 = 2 = RHS

 

(v) \(\frac{ 7 \; cos 55 ^{\circ} }{ 3 \; sin 35 ^{\circ}} – \frac{ 4 ( cos 70^{\circ} cosec 20 ^{\circ} ) }{ 3 ( tan 5^{\circ} tan 25^{\circ} tan 45 ^{\circ} tan 65^{\circ}tan 85^{\circ} ) } = 1\)

Sol:

LHS = \(\frac{ 7 \; cos 55^{\circ}}{3 \;sin 35^{\circ}}-\frac{ 4 ( cos 70^{\circ}cosec 20^{\circ})}{3(tan 5 ^{\circ} tan 25 ^{\circ}tan 45 ^{\circ} tan 65 ^{\circ}tan 85 ^{\circ} ) }\)

= \(\frac{ 7 \; cos 55 ^{\circ} } { 3 \; cos ( 90 ^{\circ} – 35 ^{\circ} ) } – \frac{ 4( sin ( 90 ^{\circ} – 70 ^{\circ} ) cosec 20^{\circ} ) } { 3 ( cot ( 90 ^{\circ} – 5 ^{\circ} ) \times cot ( 90 – 25 ^{\circ} ) \times 1 \times tan 65 ^{\circ} \times tan 85 ^{\circ} ) }\)

= \(\frac{ 7 \; cos 55 ^{\circ} }{ 3 \; cos 55^{\circ} } – \frac{ 4 (sin 20 ^{\circ} ??\; cosec 20 ^{\circ} ) } {3 ( cot 85 ^{\circ} \; cot 65 ^{\circ} \; tan 65 ^{\circ} \; tan 85 ^{\circ} ) }\)

= \(\frac{ 7 } { 3 } – \frac{ 4 ( sin 20 ^{\circ} \times \frac{ 1 }{sin 20 ^{\circ} } ) } { 3 (\frac{ 1 }{tan 85 ^{\circ} } \times \frac{ 1 }{ tan 65 ^{\circ} } \times tan 65^{\circ} \times tan 85^{\circ} ) }\)

= \(\frac{ 7 }{ 3 } – \frac{ 4 }{ 3 }\)

= \(\frac{ 3 } { 3 }\) = 1 = RHS

Related Links
NCERT Books NCERT Solutions RS Aggarwal
Lakhmir Singh RD Sharma Solutions NCERT Solutions Class 6 to 12
More RS Aggarwal Solutions
RS Aggarwal Solutions Class 12 SolutionsRS Aggarwal Solutions Class 6 Solutions Bar Graph
RS Aggarwal Solutions Class 6 Solutions Chapter 1 Number System Exercise 1 1RS Aggarwal Solutions Class 6 Solutions Chapter 21 Concept Of Perimeter And Area Exercise 21 2
RS Aggarwal Solutions Class 6 Solutions Chapter 4 IntegeRS Exercise 4 1RS Aggarwal Solutions Class 6 Solutions Chapter 5 Fractions Exercise 5 2
RS Aggarwal Solutions Class 6 Solutions Chapter 7 Decimals Exercise 7 2RS Aggarwal Solutions Class 6 Solutions Chapter 9 Linear Equations In One Variable Exercise 9 2