RS Aggarwal Class 10 Solutions Chapter 8 Trigonometric Identities

RS Aggarwal Class 10 Chapter 8 Trigonometric Identities Solutions Free PDF

The trigonometric identities are simply the identities that helps establish a relationship between different trigonometric functions. Learning these identities will undoubtedly prove useful for all the students, who are preparing for this particular chapter of Trigonometric Identities. The inverse of a few identities is equal to sum of the trigonometric identities. Check out the various types of identities below:

  1. Cos(x)= 1/Sec(x)
  2. Sec(x)= 1/Cos(x)
  3. Sin(x)= 1/Cosec(x)
  4. Cosec(x)= 1/Sin(x)
  5. Cot(x)= 1/Tan(x)

Check out the RS Aggarwal Class 10 Solutions Chapter 8 Trigonometric Identities below:

Q.1: Without using trigonometric table, evaluate:

(i) \(\frac{ sin 16^{\circ} }{ cos 74^{\circ} }\)

Sol:

= \(\frac{ sin ( 90^{\circ} – 74^{\circ}) }{ cos 74^{\circ} }\)

= \(\frac{ cos 74^{\circ}}{ cos 74^{\circ} }\) [ \(Since, sin( 90-\Theta ) = cos\Theta\)] = 1

(ii) \(\frac{sec \; 11^{\circ}}{cosec \; 79^{\circ}}\)

Sol:

= \(\frac{sec ( 90^{\circ} – 79^{\circ})}{cosec\;79^{\circ}}\)

= \(\frac{cosec \; 79^{\circ}}{cosec \; 79^{\circ}}\) [\(Since, sec( 90 – \Theta )=cosec \Theta\)] = 1

(iii) \(\frac{ tan \; 27 ^{\circ} }{ cot \; 63 ^{\circ} }\)

Sol:

= \(\frac{ tan( 90 ^{\circ} – 63^{\circ}) }{ cot \; 63 ^{\circ} }\)

= \(\frac{ cot \; 63^{\circ} }{ cot \; 63 ^{\circ} }\) [\(Since, sin(90-\Theta )=cot\Theta\)] = 1

(iv) \(\frac{ cos \; 35^{\circ} }{ sin \; 55 ^{\circ} }\)

Sol:

= \(\frac{ cos( 90^{\circ} – 55^{\circ} ) }{ sin \; 55^{\circ} }\)

= \(\frac{ sin \; 55^{\circ} }{ sin \; 55^{\circ} }\) [ \(sin( 90 – \Theta ) = cos \Theta\) ] = 1

(v) \(\frac{ cosec \; 42 ^{\circ} }{ sec \; 48 ^{\circ} }\)

Sol:

= \(\frac{ cosec( 90 ^{\circ} – 48 ^{\circ} ) }{ sec \; 48 ^{\circ} }\) [ \(Since, sec( 90-\Theta )=cosec\Theta\) ] = 1

(vi) \(\frac{cot \; 38^{\circ}}{tan \; 52^{\circ}}\)

Sol:

= \(\frac{cot( 90^{\circ} – 52^{\circ})}{tan \; 52^{\circ}}\)

= \(\frac{tan \; 52^{\circ}}{tan \; 52^{\circ}}\) [\(Since, tan( 90 – \Theta ) = cot \Theta\) ] = 1

Q.2: Without using trigonometric tables, proves that:

(i) \(cos \; 81 ^{\circ} – sin \; 9 ^{\circ} = 0\)

Sol:

LHS = \(cos \; 81 ^{\circ} – sin \; 9 ^{\circ}\)

= \(cos ( 90 ^{\circ} – 9^{\circ} ) – sin 9 ^{\circ}\)

= \(sin 9 ^{\circ} – sin 9 ^{\circ}\) = 0

(ii) \(tan 71 ^{\circ} – cot 19 ^{\circ} = 0\)

Sol:

LHS = \(tan 71 ^{\circ} – cot 19 ^{\circ}\)

= \(tan( 90^{\circ} – 19^{\circ} ) – cot( 19 ^{\circ} )\)

= \(cot(19 ^{\circ} ) – cot ( 19 ^{\circ} )\) = 0 = RHS

(iii) \(cosec ( 80 ^{\circ} ) – sec ( 10 ^{\circ}) = 0\)

Sol:

LHS = \(cosec ( 80^{\circ} ) – sec( 10 ^{\circ} )\)

= \(cosec( 90 ^{\circ} – 10 ^{\circ}) – sec( 10 ^{\circ} )\)

= \(sec ( 10 ^{\circ} ) – sec ( 10^{\circ} )\) = 0 = RHS

(iv) \(cosec ^{2} ( 72 ^{\circ} ) – tan ^{2} ( 18 ^{\circ}) = 1\)

Sol:

LHS = \(cosec^{2} ( 72 ^{\circ} ) – tan ^{2}( 18^{\circ} )\)

= \(cosec ^{2} ( 90 ^{\circ} – 18 ^{\circ} ) – tan ^{2} ( 18 ^{\circ} )\)

= \(sec ^{2} ( 18^{\circ} ) – tan ^{2}( 18^{\circ} )\) = 1 = RHS

(v) \(cos ^{2} ( 75 ^{\circ} ) – cos ^{2}( 15 ^{\circ} ) = 1\)

Sol:

LHS = \(cos ^{2} ( 75 ^{\circ} ) – cos ^{2} ( 15 ^{\circ} )\)

= \(cos ^{2}( 90 ^{\circ} – 15^{\circ}) – cos ^{2} ( 15 ^{\circ} )\)

= \(sin ^{2} ( 15 ^{\circ} ) + cos ^{2} ( 15 ^{\circ} )\) = 1 = RHS

(vi) \(tan ^{2} ( 66 ^{\circ} ) – cot ^{2} ( 24 ^{\circ} ) = 0\)

Sol:

LHS = \(tan^{2}(66^{\circ}) – cot^{2}( 24 ^{\circ} )\)

= \(cot^{2}(24^{\circ})-cot^{2}(24^{\circ})\) = 0 = RHS

(vii) \(sin^{ 2 }( 48^{\circ} ) + sin ^{2} ( 42^{\circ}) = 1\)

Sol:

LHS = \(sin ^{2}(48 ^{\circ} ) + sin ^{2}( 42 ^{\circ} )\)

= \(sin ^{2} ( 90^{\circ} – 42 ^{\circ} ) + sin ^{2}(42 ^{\circ})\)

= \(cos ^{2} ( 42 ^{\circ} ) +sin ^{2} ( 42^{\circ} )\) = 1 = RHS

(viii) \(cos ^{2} ( 57 ^{\circ} ) – sin ^{2} ( 33 ^{\circ} ) = 0\)

Sol:

LHS = \(cos ^{2} ( 57 ^{\circ} ) – sin ^{2} ( 33 ^{\circ} )\)

= \(cos ^{2} ( 90 ^{\circ} – 33 ^{\circ} ) – sin ^{2} ( 33 ^{\circ} )\)

= \(sin ^{2} ( 33 ^{\circ} ) – sin ^{2} ( 33 ^{\circ} )\) = 0 = RHS

(ix) \(( sin 65 ^{\circ} + cos 25 ^{\circ} )( sin 65 ^{\circ} – cos 25 ^{\circ}) = 0\)

(ix) LHS = \(( sin 65 ^{\circ} + cos 25 ^{\circ} ) ( sin 65 ^{\circ} – cos 25 ^{\circ} )\)

= \(sin ^{2} ( 65 ^ {\circ} ) – cos ^{2}(25^{\circ})\)

= \(sin ^{2} ( 90 ^{\circ} – 25 ^{\circ} ) – cos ^{2} ( 25 ^{\circ} )\)

= \(cos ^{2} ( 25 ^{\circ} ) – cos ^{2} ( 25 ^{\circ} )\)

= \(cos ^{2} ( 65 ^{\circ} ) – cos^{2} ( 25 ^{\circ} )\) = 0 = RHS

Q.3: Without using trigonometric tables, prove that:

(i) \(sin 53 ^{\circ} cos 37 ^{\circ} + cos 53 ^{\circ} sin 37 ^{\circ} = 1\)

Sol:

LHS = \(sin 53 ^{\circ} cos 37 ^{\circ} + cos 53 ^{\circ} sin 37 ^{\circ}\)

= \(sin ( 90 ^{\circ} – 37 ^{\circ} ) cos 37 ^{\circ} + cos ( 90 ^{\circ} -37^{\circ})sin37^{\circ}\)

= \(cos 37 ^{\circ} cos 37 ^{\circ} + sin 37 ^{\circ} sin 37^{\circ}\)

= \(cos ^{2} 37 ^{\circ} + sin ^{2} 37 ^{\circ}\) = 1 = RHS

(ii) \(cos 54 ^{\circ} cos 36 ^{\circ} – sin 54 ^{\circ} sin 36^ {\circ} = 0\)

Sol:

LHS = \(cos 54 ^{\circ} cos 36 ^{\circ} – sin 54 ^{\circ}sin 36 ^{\circ}\)

= \(cos ( 90 ^{\circ} – 36 ^{\circ} ) cos 36 ^{\circ} – sin ( 90 ^{\circ} -36^{\circ} )sin 36 ^{\circ}\)

= \(sin 36 ^{\circ} cos 36^{\circ} – cos 36 ^{\circ} sin 36 ^{\circ}\) = 0 = RHS

(iii) \(sec 70 ^{\circ} sin 20 ^{\circ} + cos 20 ^{\circ} cosec 70 ^{\circ} = 2\)

Sol:

LHS = \(sec 70^{\circ} sin 20 ^{\circ} + cos 20 ^{\circ} cosec 70 ^{\circ}\)

= \(sec ( 90 ^{\circ} – 20 ^{\circ} ) sin 20 ^{\circ} + cos 20 ^{\circ} cosec ( 90 ^{\circ} – 20 ^{\circ})\)

= \(cosec 20 ^{\circ} \frac{ 1 } { cosec 20 ^{\circ} } + \frac{ 1 }{ sec 20 ^{\circ} } sec 20 ^{\circ}\) = 1 + 1= 2= RHS

(iv) \(sin 35 ^{\circ} sin 55 ^{\circ} – cos 35 ^{\circ} cos 55 ^{\circ} = 0\)

Sol:

LHS = \(sin 35^ {\circ} sin 55 ^{\circ} – cos 35 ^{\circ} cos 55 ^{\circ}\)

= \(sin 35^{\circ} cos ( 90 ^{\circ} – 55^{\circ} ) – cos 35 ^{\circ} sin ( 90 ^{\circ} -55^{\circ} )\)

= \(sin 35 ^{\circ} cos 35 ^{\circ} – cos 35 ^{\circ} sin 35 ^{\circ}\) = 0 = RHS

(v) \((sin 72 ^{\circ} + cos 18 ^{\circ} ) ( sin 72 ^{\circ} – cos 18 ^{\circ} ) = 0\)

Sol:

LHS = \((sin 72 ^{\circ} + cos 18 ^{\circ} ) ( sin 72 ^{\circ} – cos 18 ^{\circ} )\)

= \(( sin 72 ^{\circ} + cos 18 ^{\circ} ) ( cos ( 90 ^{\circ} – 72 ^{\circ})-cos 18 ^{\circ} )\)

= \(( sin 72 ^{\circ} + cos 18 ^{\circ} ) ( cos 18 ^{\circ} – cos 18 ^{\circ} )\)

= \((sin 72 ^{\circ} + cos 18 ^{\circ} ) ( 0 )\) = 0 = RHS

(vi) \(tan 48 ^{\circ} tan 23^{\circ} tan 42 ^{\circ} tan 67 ^{\circ} = 1\)

Sol:

LHS = \(tan 48 ^{\circ} tan 23 ^{\circ} tan 42 ^{\circ} tan 67 ^{\circ}\)

= \(cot ( 90^{\circ} – 48 ^{\circ} ) cot ( 90 ^{\circ} -23 ^{\circ} ) tan 42 ^{\circ} tan 67 ^{\circ}\)

= \(cot 42 ^{\circ} cot 67 ^{\circ} tan 42 ^{\circ} tan 67 ^{\circ}\)

= \(\frac{ 1 } { tan 42 ^{\circ} } \times \frac{ 1 }{ tan 67 ^{\circ}} \times tan 42 ^{\circ} \times tan 67 ^{\circ}\) = 1 = RHS

Q.4: Prove that:

(i) \(\frac{ sin 70 ^{\circ} } { cos 20 ^{\circ} } + \frac{ cosec20 ^{\circ} } { sec 70 ^{\circ} } – 2 cos 70 ^{\circ} cosec 20 ^{\circ}  = 0\)

(i) LHS = \(\frac{ sin 70 ^ {\circ} } { cos 20 ^{\circ} } + \frac{ cosec 20 ^{\circ} }{ sec 70 ^{\circ} } – 2 cos 70 ^{\circ} cosec 20 ^{\circ}\)

= \(\frac{ sin 70 ^{\circ} }{ sin ( 90 ^{\circ} – 20 ^{\circ} ) } + \frac{ sec ( 90 ^{\circ} -20 ^{\circ} ) } { sec 70 ^{\circ} } – 2 cos 70 ^{\circ} sec ( 90 ^{\circ} – 20 ^{\circ} )\)

= \(\frac{ sin 70 ^{\circ} } { sin 70 ^{\circ} } + \frac{ sec 70 ^{\circ} }{ sec 70 ^{\circ} } -2 cos 70 ^{\circ} sec 70 ^{\circ}\)

= 1 + 1 – 2 * \(cos 70 ^{\circ} \times \frac{ 1 }{ cos 70 ^{\circ} }\)

= 2 – 2 = 0 = RHS

(ii) \(\frac{ cos 80 ^{\circ} }{ sin 10 ^{\circ} } + cos 59 ^{\circ} cosec 31^{\circ} = 2\)

Sol:

LHS = \(\frac{ cos 80 ^{\circ} }{ sin 10 ^{\circ} } + cos 59 ^{\circ} cosec 31 ^{\circ}\)

= \(\frac{ cos 80^{\circ} }{ cos ( 90^{\circ} – 10^{\circ})}+sin( 90^{\circ} – 59^{\circ})cosec 31^{\circ}\)

= \(\frac{cos80^{\circ}}{cos80^{\circ}}+sin31^{\circ}\;cosec31^{\circ}\)

= 1 + \(sin31^{\circ}\times \frac{1}{sin31^{\circ}}\)

= 1 + 1 = 2 = RHS

(iii) \(\frac{ 2 sin 68 ^{\circ} }{ cos 22 ^{\circ} } – \frac{ 2 cot 15 ^{\circ} }{ 5 tan 75 ^{\circ} } – \frac{ 3 \; tan 45 ^{\circ} \; tan 20 ^{\circ} \; tan 40 ^{\circ} \; tan 50 ^{\circ} \; tan 70 ^{\circ} } { 5 }\)

Sol:

LHS = \(\frac{ 2 sin 68 ^{\circ} } { cos 22 ^{\circ} } -\frac{ 2 cot 15 ^{\circ} } { 5 tan 75 ^{\circ}} -\frac{ 3 \; tan 45 ^{\circ} \; tan 20 ^{\circ} \; tan 40 ^{\circ} \; tan 50 ^{\circ} \; tan 70 ^{\circ} }{ 5 } = 1\)

= \(\frac{ 2 sin 68 ^{\circ} } { sin ( 90 ^{\circ} – 22 ^{\circ} ) } -\frac{ 2 cot 15 ^{\circ} }{ 5 cot ( 90 ^{\circ} – 75 ^{\circ} ) } – \frac{ 3 \times 1 \times cot ( 90 ^{\circ} – 20 ^{\circ} ) \times cot ( 90 ^{\circ} – 40 ^{\circ} ) \times tan 50 ^{\circ} \times tan 70 ^{\circ} }{ 5 }\)

= \(\frac{ 2 \; sin 68 ^{\circ} }{ sin 68 ^{\circ} } – \frac{ 2 cot 15 ^{\circ} }{ 5 cot 15 ^{\circ} } – \frac{ 3 \; cot 70 ^{\circ} \; cot 50 ^{\circ} \; tan 50 ^{\circ} \; tan 70 ^{\circ} }{ 5 }\)

= \(2 – \frac{ 2 } { 5 } – \frac{ 3 \times \frac{ 1 }{ tan 70 ^{\circ}}\times \frac{ 1  }{ tan 50 ^{\circ} } \times tan 50 ^{\circ} \times tan 70 ^{\circ} }{ 5 }\)

= \(2-\frac{ 2 } { 5 } -\frac{ 3 }{ 5 }\)

= \(\frac{10 – 2 – 3}{ 5 }\) = \(\frac{ 5 }{ 5 }\) = 1 = RHS

(iv) \(\frac{sin 18 ^{\circ} }{ cos 72 ^{\circ} } + \sqrt{ 3 }( tan 10 ^{\circ} \; tan 30 ^{\circ} \; tan 40 ^{\circ} \; tan 50 ^{\circ} ) = 2\)

(iv) LHS = \(\frac{ sin 18 ^{\circ} }{ cos 72 ^{\circ} } + \sqrt{ 3 }( tan 10 ^{\circ} \; tan 30 ^{\circ} \; tan 40 ^{\circ} \; tan 50 ^{\circ} )\)

= \(\frac{sin 18 ^{\circ} }{ sin ( 90 ^{\circ} – 72 ^{\circ})} + \sqrt{3} [ cot( 90^{\circ}-10 ^{\circ}) \times \frac{ 1 }{ \sqrt{ 3 } } \times cot ( 90 ^{\circ} – 40 ^{\circ} ) \times tan 50 ^{\circ} \times tan 80 ^{\circ} ]\)

= \(\frac{sin 18 ^{\circ} }{ sin 18 ^{\circ} } + \sqrt{ 3 }( \frac{ cot 80 ^{\circ} \times cot 50 ^{\circ} \times tan 50^{\circ}\times tan 80^{\circ}}{ \sqrt{ 3 } } )\)

= 1 + \(( \frac{ 1 }{tan 80 ^{\circ}} \times \frac{ 1 }{ tan 50 ^{\circ} } \times tan 50^{\circ} \times tan 80 ^{\circ})\)

= 1 + 1 = 2 = RHS

(v) \(\frac{ 7 \; cos 55 ^{\circ} }{ 3 \; sin 35 ^{\circ}} – \frac{ 4 ( cos 70^{\circ} cosec 20 ^{\circ} ) }{ 3 ( tan 5^{\circ} tan 25^{\circ} tan 45 ^{\circ} tan 65^{\circ}tan 85^{\circ} ) } = 1\)

Sol:

LHS = \(\frac{ 7 \; cos 55^{\circ}}{3 \;sin 35^{\circ}}-\frac{ 4 ( cos 70^{\circ}cosec 20^{\circ})}{3(tan 5 ^{\circ} tan 25 ^{\circ}tan 45 ^{\circ} tan 65 ^{\circ}tan 85 ^{\circ} ) }\)

= \(\frac{ 7 \; cos 55 ^{\circ} } { 3 \; cos ( 90 ^{\circ} – 35 ^{\circ} ) } – \frac{ 4( sin ( 90 ^{\circ} – 70 ^{\circ} ) cosec 20^{\circ} ) } { 3 ( cot ( 90 ^{\circ} – 5 ^{\circ} ) \times cot ( 90 – 25 ^{\circ} ) \times 1 \times tan 65 ^{\circ} \times tan 85 ^{\circ} ) }\)

= \(\frac{ 7 \; cos 55 ^{\circ} }{ 3 \; cos 55^{\circ} } – \frac{ 4 (sin 20 ^{\circ}  \; cosec 20 ^{\circ} ) } {3 ( cot 85 ^{\circ} \; cot 65 ^{\circ} \; tan 65 ^{\circ} \; tan 85 ^{\circ} ) }\)

= \(\frac{ 7 } { 3 } – \frac{ 4 ( sin 20 ^{\circ} \times \frac{ 1 }{sin 20 ^{\circ} } ) } { 3 (\frac{ 1 }{tan 85 ^{\circ} } \times \frac{ 1 }{ tan 65 ^{\circ} } \times tan 65^{\circ} \times tan 85^{\circ} ) }\)

= \(\frac{ 7 }{ 3 } – \frac{ 4 }{ 3 }\)

= \(\frac{ 3 } { 3 }\) = 1 = RHS

 

Access CBSE Sample Paper for class 10 Maths here.

Access NCERT Book for class 10 Maths here.


Practise This Question

When magnetic field lines are closer, the magnetic field is ___.