# Specific Gravity Formula

Specific Gravity elucidates us about how lighter or denser a given object is. It is found by comparing the mass, weight or density of given amount of material or fluid with the same amount of water at four degree  Celsius.

Specific Gravity Formula is articulated as

$Specific\;&space;gravity=\frac{Mass\;&space;of\;&space;unit\;&space;volume\;&space;of\;&space;the\;&space;substance}{Mass\;&space;of\;&space;unit\;&space;volume\;&space;of\;&space;water}$

or

$Specific\;&space;gravity=\frac{weight\;&space;of\;&space;the\;&space;substance}{Weight\;&space;of\;&space;the\;&space;equal\;amount\;&space;of\;&space;water}$

or

$Specific\;&space;gravity=\frac{Density\;&space;of\;&space;substance}{Density\;&space;of\;&space;equal\;volume\;&space;of\;&space;water}$

It is unit less. Specific gravity formula is convenient in finding specific gravity of any given material in any given.

The density of water is 1000 Kg/m3

Specific gravity Solved Examples

Underneath are problems based on specific gravity which may be useful for scholars.

Problem 1: If the density of iron is 7850 kg/m3, what is its specific gravity?

Known:

Density of iron = 7850 Kg/m3,
Density of water = 1000 Kg/m3

$Specific\;&space;gravity=\frac{Density\;&space;of\;&space;given\;substance}{Density\;&space;of\;&space;equal\;volume\;&space;of\;&space;water}$

$=\frac{7850}{1000}=7.85$

Problem 2: Compute the specific gravity if the density of granite is 174.8 lbs/ft3 and density of water is 62.4 lb/ft3?
$Specific\;&space;gravity=\frac{Density\;&space;of\;&space;given\;substance}{Density\;&space;of\;&space;equal\;volume\;&space;of\;&space;water}$
$=\frac{174}{62.4}=2.8$