Dehydrogenation (Dehydration) of Alcohols

What is Dehydration of Alcohols?

Alcohol upon reaction with protic acids tends to lose a molecule of water to form alkenes. These reactions are known as dehydrogenation or dehydration of alcohols.

It is an example of an elimination reaction. Its rate varies for primary, secondary and tertiary alcohols. This variation of rate can be attributed to the stability of carbocation generated. Since the carbocation is most stable in the case of tertiary alcohols, the rate of dehydration is highest for tertiary alcohols in comparison to secondary and primary alcohols.

Recommended Videos

Dehydration Mechanism Steps

Dehydration of alcohols follows a three-step mechanism.

  1. Formation of protonated alcohol
  2. Formation of carbocation
  3. Formation of alkenes

General dehydration reaction of alcohols can be seen as,

Dehydration Reaction

Dehydration Reaction

Mechanism of Dehydration of Alcohols:

Dehydration of alcohols can follow E1 or E2 mechanism. For primary alcohols, the elimination reaction follows E2 mechanism while for secondary and tertiary alcohol elimination reaction follows E1 mechanism.

Generally, it follows a three-step mechanism. The steps involved are explained below.

1. Formation of protonated alcohol:

In this step, the alcohol is acted upon by a protic acid. Due to the lone pairs present on oxygen atom it acts as a Lewis base. Protonation of alcoholic oxygen takes place which makes it a better leaving group. It is a reversible step which takes place very quickly.

Formation of Protonated Alcohol

Formation of Protonated Alcohol

2. Carbocation formation:

In this step, the C-O bond breaks generating a carbocation. This step is the slowest step in the mechanism of dehydration of an alcohol. Hence, the formation of the carbocation is considered as the rate-determining step.

Carbocation Formation

Carbocation Formation

3. Alkene formation:

This is the last step in the dehydration of alcohols. Here the proton generated is eliminated with the help of a base. The carbon atom adjacent to the carbocation breaks the existing C-H bond to form C=C. Thus, an alkene is formed.

Alkene Formation

Alkene Formation

For a detailed discussion on dehydration of alcohols, please download Byju’s- The Learning App.

Leave a Comment

Your email address will not be published. Required fields are marked *