Enter your keyword

Exponents Formula

In the expression, $a^{2}$, a is known as base and 2 is known as the exponent. An exponent represents the number of times the base to be multiplied. For example, in $a^{2}$, a will be multiplied twice, i.e., a $\times$ a and silimarlt $a^{3}$ = a $\times$ a $\times$ a.

Here we will learn about various formulas of exponents

The Exponents Formulas are

$\large a^{0}=1$

$\large a^{1}=a$

$\large \sqrt{a}=a^{\frac{1}{2}}$

$\large \sqrt[n]{a}=a^{\frac{1}{n}}$

$\large a^{-n}=\frac{1}{a^{n}}$

$\large a^{n}=\frac{1}{a^{-n}}$

$\large a^{m}a^{n}=a^{m+n}$

$\large \frac{a^{m}}{a^{n}}=a^{m-n}$

$\large (a^{m})^{p}=a^{mp}$

$\large (a^{m}c^{n})^{p}=a^{mp}c^{np}$

$\large \left ( \frac{a^{m}}{c^{n}} \right )^{p}=\frac{a^{mp}}{c^{np}}$

 

Solved Examples

Question 1: Solve $\frac{1}{4^{-3}}$

Solution: As per the The Negative Exponent Rule –

$\frac{1}{a^{-n}}=a^{n}$

$\frac{1}{4^{-3}} = 4^{3} = 64$

Question 2: Solve $\large\frac{3a^{-3}b^{5}}{4a^{4}b^{-3}}$

= $\large\frac{3b^{3}b^{5}}{4a^{4}a^{3}}$

= $\large\frac{3b^{8}}{4a^{7}}$

More topics in Exponential Formula
Square Root Formula Sum of Squares Formula
Difference of Squares Formula Cube Formula
Cube Root Formula Binomial Expansion Formula
Exponential Function Formula Exponential Equation Formula
Double Time Formula
Related Links
Geometric Mean FormulaPythagorean Theorem Formula
Cofunction FormulasExponential Growth Formula
Buoyancy FormulaDc Voltage Drop Formula
Regular Tetrahedron FormulaMean Median Mode Formula
Prime Number FormulaInverse Hyperbolic Functions Formula
Byjus Formulas