 # Frequency Formula

Frequency is the revolutions per second or number of wave cycles. The Formula for period (T) in terms of frequency is articulated as:

If one considers any wave in terms of wavelength and velocity, the Frequency Formula is articulated as

$$\begin{array}{l}f= \frac{v}{\lambda }\end{array}$$
Where,

the frequency of the wave is f,
the wave velocity or wave speed is V,
the wavelength of the wave is λ.

If the light wave is considered, then the frequency is articulated as

$$\begin{array}{l}f= \frac{c}{\lambda }\end{array}$$
Where c is the velocity of light.

Frequency in terms of angular frequency is articulated as

$$\begin{array}{l}f= \frac{\omega }{2\pi }\end{array}$$
Where ω is the angular frequency.

The formula for the frequency of a wave is used to find frequency (f), time period (T), wave speed (V) and wavelength (λ). The Frequency is expressed in Hertz (Hz).

### Solved Example

Underneath are given some questions based on frequency formula which may be useful for you.

Example 1: The light wave has a wavelength of 500 nm. Compute its frequency?

$$\begin{array}{l}f= \frac{v}{\lambda }\end{array}$$
$$\begin{array}{l}f = \frac{3\times 10^{8}}{500 \times 10^{-9}} = 6\times 10^{14} Hz\end{array}$$