Heat Capacity Formula

Heat Capacity Formula

Heat capacity is the heat required to raise the temperature of an object by one degree.
Heat gain or loss results to changes in temperature, state and performance of the work. Heat is a transfer of energy. The heat capacity of a defined object is usually expressed in joules or calories and temperature in Celsius or Kelvin.

Heat Capacity formula is expressed by,


Δ Q = amount of heat transferred,
ΔT = temperature difference.

Heat Capacity problem can be applied to calculate the heat capacity, mass or temperature difference of any given substance.
Heat Capacity is described in Joule per Kelvin (J/K).
Please note that in Heat capacity, we consider the specific amount of mass and that mass can be any amount.

Example 1
Determine the heat capacity of copper of mass 70 g and the temperature difference is 20oC, if 300 J of heat is lost.

Given parameters are,
Mass m = 70 g,
Temperature difference T = 20oC,
Heat lost Δ Q = 300 J
the Heat capacity formula is given by
c = Q / mΔT
= 300 / 20

= 15 J/oC

Example 2
Determine the heat capacity of 3000 J of heat is used to heat the iron rod of mass 10 Kg from 20oC to 40oC.

Given parameters are
Mass m = 10 Kg,
Temperature difference Δ T = 20oC,
Heat lost Δ Q = 3000 J
The Heat capacity formula is given by
c = Q / ΔT
= 3000 / 20
= 150 J/oC

Practise This Question

A transverse wave on a string travelling along +ve x-axis has been shown in the figure below:

The mathematical form of the shown wave is y=(3.0cm)sin[2π×0.1t2π100x] where t is in seconds and x is in centimeters. Find the total distance travelled by the particle at (1) in 10 min 15 s, measured from the
instant shown in the figure and direction of its motion at the end of this time.