Complex numbers are defined as numbers of the form x+iy, where x and y are real numbers and i = √-1. For example, 3+2i, -2+i√3 are complex numbers. For a complex number z = x+iy, x is called the real part, denoted by Re z, and y is called the imaginary part, denoted by Im z. For example, if z = 3+2i, Re z = 3 and Im z = 2.
In this section, students will learn about complex numbers – definition, standard form, algebraic operations, conjugate, complex numbers’ polar form, Euler’s form and much more. A complex number is a combination of a real number and an imaginary number.
Table of Contents
What Are Complex Numbers?
If x, y ∈ R, then an ordered pair (x, y) = x + iy is called a complex number. It is denoted by z, where x is the real part of Re(z) and y is the imaginary part or Im (z) of the complex number.
(i) If Re(z) = x = 0, then z is called a purely imaginary number.
(ii) If Im(z) = y = 0 then z is called a purely real number.
Note: The set of all possible ordered pairs is called a complex number set and is denoted by C.
Integral Powers of an Iota
An imaginary number, i (iota), is defined as √-1 since i = √-1; we have i2 = –1, i3 = –i, and i4 = 1.
- To find the value of in (n > 4), first divide n by 4.
Let q be the quotient and r be the remainder.
n = 4q + r where o < r < 3
in = i4q + r = (i4)q . ir = (i)q . ir = ir
- The sum of four consecutive powers of i is zero.
in + in+1 + in + 2 + in + 3 = 0, n ∈ z
- 1/i = – i
- (1 + i)2 = 2i and (1 – i)2 = 2i
- √a . √b = √ab is valid only when at least one of a and b is non-negative.
- If both a and b both negative, then √a × √b = -√(|a|.|b|)
- √-a × √-b = -a
Illustration 1: Evaluate i201
Solution: 201 leaves the remainder as 1 when it is divided by 4; therefore, i201 = i1 = i.
Illustration 2: Evaluate 1 + (1+i) + (1+i)2 + (1+i)3
Solution: 1 + (1+i) + (1+i)2 + (1+i)3 = 1 + (1+i) + (2i) + (-2+2i)
= 1 + 1 + i + 2i -2+2i = 5i
Illustration 3: [(1 + i)/√2]8n + [(1 – i)/√2]8n = ____.
Solution:
[(1 + i)/√2]8n + [(1 – i)/√2]8n = [{(1 + i)/√2}2]4n + [{(1 – i)/√2}2]4n
= (2i/2)4n + (-2i/2)4n = i4n + (-i)4n
= 1 + 1 = 2
Illustration 4: Evaluate: (i4n+1 – i4n-1)/2, n ε z.
Solution:
(i4n+1 – i4n – 1)/2 = (i4n . i – i4n . i-1)/2 = (i – i-1)/2 = (i + i)/2 = i.
Check: JEE Previous Year Solved Problems on Complex Numbers
Algebraic Operations with Complex Numbers
1. Addition: (a + ib) + (c + id) = (a + c) + i(b + d)
2. Subtraction: (a + ib) – (c + id) = (ac) + i(b – d)
3. Multiplication: (a + ib) (c + id)
= (ac – bd) + i(ad + bc)
4. Reciprocal: If at least one of a, b is non-zero, then the reciprocal of a + bi is given by
1/(a+ib) = (a – ib)/[(a+ib) (a−ib)] = a/[a2 + b2] – i[b/(a2 + b2)]
5. Quotient: If at least one of c, d is non-zero, then the quotient of a + bi and c + di is given by
[(a+bi)/(c+di)] = [(a+ib) (c−id)]/[(c+id) (c−id)] = [(ac + bd) + i(bc – ad)]/[c2 + d2]
= [ac + bd]/[c2 + d2] + i[bc−ad]/[c2+d2 ]
Conjugate of a Complex Number
Let = z = a + ib be a complex number. We define the conjugate of z, denoted by z¯, to be the complex number a – ib, that is, if z = a + ib, then z¯ = a – ib.
Read More
Properties of Conjugate of a Complex Number
\(\begin{array}{l}{{z}_{1}}={{z}_{2}}\Leftrightarrow {{\overline{z}}_{1}}={{\overline{z}}_{2}}[/latex
\(\begin{array}{l}\overline{(\bar{z})}=z\end{array} \)
\(\begin{array}{l}z+\overline{z}=2\,{Re}(z)\end{array} \)
\(\begin{array}{l}z-\overline{z}=2i\,{Im}\,(z)\end{array} \)
\(\begin{array}{l}z=\overline{z}\Leftrightarrow z\ \text{is purely real}\end{array} \)
\(\begin{array}{l}z+\overline{z}=0\Leftrightarrow z\ \text{is purely imaginary.}\end{array} \)
\(\begin{array}{l}z\overline{z}={{[Re\,(z)]}^{2}}+{{[Im(z)]}^{2}}\end{array} \)
\(\begin{array}{l}\overline{{{z}_{1}}+{{z}_{2}}}={{\overline{z}}_{1}}+{{\overline{z}}_{2}}\end{array} \)
\(\begin{array}{l}\overline{{{z}_{1}}-{{z}_{2}}}={{\overline{z}}_{1}}-{{\overline{z}}_{2}}\end{array} \)
\(\begin{array}{l}\overline{{{z}_{1}}{{z}_{2}}}={{\overline{z}}_{_{1}}}{{\overline{z}}_{_{2}}}\end{array} \)
\(\begin{array}{l}\overline{\left( \frac{{{z}_{1}}}{{{z}_{2}}} \right)}=\frac{{{\overline{z}}_{1}}}{{{z}_{2}}}\ \text{if}\ z_2 \ne 0\end{array} \)
- If P(z) = a0 + a1 z + a2 z2 + …. + an zn
Where a0, a1, ….. an and z are complex number, then \(\begin{array}{l}\overline{P(z)}={{\overline{a}}_{0}}+{{\overline{a}}_{1}}(\overline{z})+{{\overline{a}}_{2}}{{(\overline{z})}^{2}}+….+{{\overline{a}}_{n}}{{(\overline{z})}^{n}} = \overline{P}(\overline{z})\end{array} \)
Where \(\begin{array}{l}\overline{P}(z)={{\overline{a}}_{0}}+{{\overline{a}}_{1}}z+{{\overline{a}}_{2}}{{z}^{2}}+….+{{\overline{a}}_{n}}{{z}^{n}}\end{array} \)
\(\begin{array}{l}\text{If}\ R(z) = \frac{P(z)}{Q(z)}\end{array} \)
where P (z) and Q (z) are polynomials in z, and Q(z) ≠ 0, then \(\begin{array}{l}\overline{R\,(z)}=\frac{\overline{P}(\overline{z})}{\overline{Q}(\overline{z})}\end{array} \)
Conjugates of Complex Numbers Video Lesson
Modulus of a Complex Number
Let z = a + ib be a complex number. We define the modulus or the absolute value of z to be the real number √(a2 + b2) and denote it by |z|.
Note that |z| > 0 ∀ z ∈ C
Read More
Properties of Modulus
If z is a complex number, then
(i) |z| = 0 ⇔ z = 0
(ii) |z| = |z¯| = |-z| = |-z¯|
(iii) – |z| ≤ Re (z) ≤ |z|
(iv) – |z| ≤ Im(z) ≤ |z|
(v) z z¯ = |z|2
If z1, z2 are two complex numbers, then
(vi) |z1 z2| = |z1|.|z2|
(vii) ∣z1/z2∣ = ∣z1/z2∣, if z2 ≠ 0
(viii) |z1 + z2|2 = |z1|2 + |z2|2 + z¯1 z2 + z1 z–2 = |z1|2 + |z2|2 + 2Re (z1 z¯2)
(ix) |z1+z2|2 + |z1|2 – |z2|2 – z¯1 z2 – z1 z¯2 = |z1|2 + |z2|2 – 2Re (z1 z¯2)
(x) |z1+z2|2 + |z1 – z2|2 = 2(|z1|2 + |z2|2)
(xi) If a and b are real numbers and z1 and z2 are complex numbers, then |az1 + bz2 |2 + |bz1 – az2 |2 = (a2 + b2) (|z1|2 + |z2|2)
(xii) If z1, z2 ≠ 0, then |z1 + z2|2 = |z1|2 + |z2|2 ⇔z1 z2 is purely imaginary.
(xiii) Triangle Inequality. If z1 and z2 are two complex numbers, then |z1 + z2| < |z1| + |z2|. The equality holds if and only if z1 z¯2 ≥ 0.
In general, |z1 + z2+…+zn| < |z1| + |z2| +…..+ |zn| and the sign equality sign holds if and only if the ratio of any two non-zero terms is positive.
(xiv) |z1 – z2| ≤ |z1| + |z2|
(xv) ||z1| – |z2|| ≤ |z1| + |z2|
(xvi) |z1 – z2| ≥ ||z1| – |z2||
Square Root of a Complex Number
Let z = x + iy then
\(\begin{array}{l}\sqrt{x+iy}=\left\{ \begin{matrix} \pm \left[ \sqrt{\frac{|z|+x}{2}}+i\sqrt{\frac{|z|-x}{2}} \right]if\,y\,>\,0 \\ \pm \left[ \sqrt{\frac{|z|+x}{2}}-i\sqrt{\frac{|z|-x}{2}} \right]if\,y\,<\,0 \\ \end{matrix} \right.\end{array} \)
Where
\(\begin{array}{l}|x| = \sqrt{{{x}^{2}}+{{y}^{2}}}\,\end{array} \)
NOTE:
(i)
\(\begin{array}{l}\sqrt{x+iy}+\sqrt{x-iy}=\sqrt{2|z|+2x}\end{array} \)
(ii)
\(\begin{array}{l}\sqrt{x+iy}-\sqrt{x-iy}=i\sqrt{2|z|-2x}\end{array} \)
(iii)
\(\begin{array}{l}\sqrt{i}=\pm \left( \frac{1+i}{\sqrt{2}} \right)\,and\,\sqrt{-i}=\pm \left( \frac{1-i}{\sqrt{2}} \right)\end{array} \)
Modulus and Argument of a Complex Number
Let z = x + iy = (x, y) for all x, y ∈ R and
\(\begin{array}{l} i =\sqrt{-1}\end{array} \)

The length OP is called the modulus of the complex number z denoted by |z|,
i.e., OP = r = |z|
\(\begin{array}{l}=\sqrt{({{x}^{2}}+{{y}^{2}})}\end{array} \)
And if (x, y) ≠ (0, 0), then θ is called the argument or amplitude of z,
\(\begin{array}{l}, i.e.,\ \theta = {{\tan }^{-1}}\left( \frac{y}{x} \right)\end{array} \)
[angle made by OP with positive X-axis]
or arg (z) =
\(\begin{array}{l}arg(z) = {{\tan }^{-1}}\left( \frac{y}{x} \right)\end{array} \)
Also, the argument of a complex number is not unique since if θ is a value of the argument, so also in 2nπ + θ, where n ∈ I. But usually, we take only that value for which
0 < θ < 2π. Any two arguments of a complex number differ by 2nπ.
The argument of z will be θ, π – θ, π + θ and 2π – θ according to the point z lies in I, II, III and IV quadrants, respectively, where
\(\begin{array}{l}\theta = {{\tan }^{-1}}\left| \frac{y}{x} \right|\end{array} \)
.
Illustration 5. Find the arguments of z1 = 5 + 5i, z2 = –4 + 4i, z3 = –3 – 3i and z4 = 2 – 2i, where
\(\begin{array}{l}i=\sqrt{-1}.\end{array} \)
Solution: Since z1, z2, z3 and z4 lies in I, II, III and IV quadrants, respectively, the arguments are given by
\(\begin{array}{l}arg(z_1) = {{\tan }^{-1}}\left( \frac{5}{5} \right)={{\tan }^{-1}}1=\pi /4\end{array} \)
\(\begin{array}{l}arg(z_2) =\pi -{{\tan }^{-1}}\left| \frac{4}{-4} \right|=\pi -{{\tan }^{-1}}1=\pi -\frac{\pi}{4}=\frac{3\pi }{4}\end{array} \)
\(\begin{array}{l}arg(z_3) =\pi -{{\tan }^{-1}}\left| \frac{-3}{-3} \right|=\pi +{{\tan }^{-1}}1=\pi +\frac{\pi}{4}=\frac{5\pi }{4}\end{array} \)
And
\(\begin{array}{l}arg(z_4) =2\pi -{{\tan }^{-1}}\left| \frac{-2}{2} \right|=2\pi +{{\tan }^{-1}}1=2\pi -\frac{\pi}{4}=\frac{7\pi }{4}\end{array} \)
Principal value of the argument
The value θ of the argument which satisfies the inequality –π < θ ≤ π is called the principal value of the argument.
If x = x + iy = ( x, y), ∀ x, y ∈ R and i = √(-1), then
\(\begin{array}{l}Arg(z) = {{\tan }^{-1}}\left( \frac{y}{x} \right)\end{array} \)
always gives the principal value. It depends on the quadrant in which the point (x, y) lies.

(i) (x, y) ∈ first quadrant x > 0, y > 0.
The principal value of arg (z) = θ
\(\begin{array}{l}={{\tan }^{-1}}\left( \frac{y}{x} \right)\end{array} \)
It is an acute angle and positive.
(ii) (x, y) ∈ second quadrant x < 0, y > 0.
The principal value of arg (z) = θ
\(\begin{array}{l}=\pi -{{\tan }^{-1}}\left( \frac{y}{|x|}\right)\end{array} \)
. It is an obtuse angle and positive.
(iii) (x, y) ∈ third quadrant x < 0, y < 0.
The principal value of arg (z) = θ
\(\begin{array}{l}=-\pi +{{\tan }^{-1}}\left( \frac{y}{x}\right)\end{array} \)

It is an obtuse angle and negative.
(iv) (x, y) ∈ fourth quadrant x > 0, y < 0.
The principal value of arg (z) = θ
\(\begin{array}{l}= -{{\tan }^{-1}}\left( \frac{|y|}{x}\right)\end{array} \)

It is an acute angle and negative.
Polar Form of a Complex Number
We have, z = x + iy
\(\begin{array}{l}=\sqrt{{{x}^{2}}+{{y}^{2}}}\left[ \frac{2}{\sqrt{{{x}^{2}}+{{y}^{2}}}}+i\frac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}} \right]\end{array} \)
= |z| [cos θ + i sin θ]
Where |z| is the modulus of the complex number, i.e., the distance of z from the origin, and θ is the argument or amplitude of the complex number.
Here, we should take the principal value of θ. For general values of argument, z = r[cos(2nπ + θ)] (where n is an integer). This is a polar form of the complex number.
Euler’s Form of a Complex Number
eiθ = cos θ + i sin θ
This form makes the study of complex numbers and their properties simple. Any complex number can be expressed as
z = x + iy (Cartesian form)
= |z| [cos θ + I sin θ] (polar form)
= |z| eiθ
De Moivre’s Theorem and Its Applications
(a) De Moivre’s theorem for integral index. If n is a integer, then (cos θ + i sin θ)n = cos (nθ) + i sin (nθ)
(b) De Moivre’s theorem for rational index. If n is a rational number, then the value of or one of the values of
(cos θ + i sin θ)n is cos (nθ) + i sin (nθ).
In fact, if n = p/q where p, q ∈ I, q > 0 and p,q have no factors in common, then (cos θ + i sin θ)n has q distinct values, one of which is cos (nθ) + i sin (nθ)
Note:
The values of (cos θ + I sin θ)p/q where p, q ∈ I, q ≠ 0, hcf (p, q) = 1 are given by
\(\begin{array}{l}\cos \left[ \frac{p}{q}(2k\pi +\theta ) \right]+i\,sin\left[ \frac{p}{q}(2k\pi +\theta ) \right]\end{array} \)
Where k = 0, 1, 2, ….., q -1. |
The nth Roots of Unity
By an nth root of unity, we mean any complex number z which satisfies the equation zn = 1 (1).
Since an equation of degree n has n roots, there are n values of z which satisfy the equation (1). To obtain these n values of z, we write 1 = cos (2kπ) + I sin (2kπ),
Where k ϵ I and
\(\begin{array}{l}\Rightarrow \,\,\,\,\,\,\,\,\,\,\,\,\,z=\cos \left( \frac{2k\pi }{n} \right)+i\sin \left( \frac{2k\pi }{n} \right)\end{array} \)
[using the De Moivre’s theorem]
Where, k = 0, 1, 2, …., n -1.
Note:
We may give any n consecutive integral values to k. For instance, in the case of 3, we may take -1, 0 and 1, and in the case of 4, we may take – 1, 0, 1 and 2 or -2, -1, 0 and 1. |
Notation
\(\begin{array}{l}\omega =\cos \left( \frac{2\pi }{n} \right)+i\sin \left( \frac{2\pi }{n} \right)\end{array} \)
By using De Moivre’s theorem, we can write the nth roots of unity as 1, ω, ω2, …., ωn-1.
The sum of the roots of unity is zero.
We have
\(\begin{array}{l}1 + \omega + …. + \omega^{n-1} = \frac{1-{{\omega }^{n}}}{1-\omega }\end{array} \)
But ωn = 1 as ω is a nth root of unity.
\(\begin{array}{l}\therefore 1+\omega +…+{{\omega }^{n-1}}=0\end{array} \)
Also, note that
\(\begin{array}{l}\frac{1}{x-1}+\frac{1}{x-\omega }….+\frac{1}{x-{{\omega }^{n-1}}}=\frac{n{{x}^{n-1}}}{{{x}^{n}}-1}\end{array} \)
nth Root of Unity Video Lesson
Cube roots of unity
Cube roots of unity are given by 1, ω, ω2, where
\(\begin{array}{l}\omega =\cos \left( \frac{2\pi }{3} \right)+i\sin \left( \frac{2\pi }{3} \right)=\frac{-1+\sqrt{3i}}{2}and\,{{\omega }^{2}}=\frac{-1-\sqrt{3i}}{2}\end{array} \)
.
Some Results Involving Complex Cube Root of Unity (ω)
(i) ω3 = 1
(ii) 1 + ω + ω2 = 0
(iii) x3 – 1 = (x – 1) ( x – ω) (x – ω2)
(iv) ω and ω2 are roots of x2 + x + 1 = 0
(v) a3 – b3 = (a – b) (a – bω) (a – bω2)
(vi) a2 + b2 + c2 – bc – ca – ab
= (a + bω + cω2) (a + bω2 + cω)
(vii) a3 + b3 + c3 – 3abc
= (a + b + c) (a + bω + cω2) (a + bω2 + cω)
(viii) x3 + 1 = (x + 1) (x + ω) (x + ω2)
(ix) a3 + b3 = (a + b) (a + bω) (a + bω2)
(x) Cube roots of real number a are a1/3, a1/3ω, a1/3 ω2.
To obtain cube roots of a, we write x3 = a, as y3 = 1, where y = x/a1/3.
Solutions of y3 = 1 are 1, ω, ω2.
x = a1/3, a1/3 ω, a1/3 ω2.
Cube Roots of Unity Video Lesson
Logarithm of a Complex Number
Loge(x + iy) = loge (|z|eiθ)
= loge |z| + loge eiθ
= loge |z| + iθ
\(\begin{array}{l}={{\log }_{e}}\sqrt{({{x}^{2}}+{{y}^{2}})}+i\arg (z)\end{array} \)
\(\begin{array}{l}\therefore {{\log }_{e}}(z)=lo{{g}_{e}}|z|+iarg(z)\end{array} \)
Problems on Complex Numbers
Illustration 1: The number of solutions of
\(\begin{array}{l}{{z}^{3}}+\overline{z}=0\ \text{is}\end{array} \)
(a) 2 (b) 3 (c) 4 (d) 5
Ans. (d)
Solution
\(\begin{array}{l}{{z}^{3}}+\overline{z}=0\,\,\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,\,\,\,\,\,{{z}^{3}}=-\overline{z}\end{array} \)
\(\begin{array}{l}\Rightarrow \,\,\,\,\,\,\,\,\,\,\,|z{{|}^{3}}=|-\overline{z}|\,\,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,|z{{|}^{3}}=|z|\end{array} \)
\(\begin{array}{l}|z|\,(|z|-1)\,(|z|+1)=0\end{array} \)
⇒ |z| = 0 or |z| = 1 [Since, |z| + 1 > 0]
If |z| = 0, then z = 0
\(\begin{array}{l}\text{If}\ |z|=1\ \text{we get};\ |z{{|}^{2}}=1\ \Rightarrow z\,\overline{z}=\,1\end{array} \)
Thus,
\(\begin{array}{l}{{z}^{3}}+\overline{z}=0\,\,\,\,\,\,\,\,\,\,\Rightarrow {{z}^{3}}+1/z=0\,\end{array} \)
\(\begin{array}{l}\Rightarrow \,\,{{z}^{4}}+1=0\end{array} \)
This equation has four non-zero and distinct roots. Therefore, the given equation has five roots.
TIP: It is unnecessary to find roots of z4 + 1 = 0
Illustration 2: If ω is an imaginary cube root of unity, then the value of the expression
2(1 + ω) (1 + ω2) + 3(2 + ω) (2 + ω2) + … + (n + 1) (n + ω) (n + ω2) is
\(\begin{array}{l}(a)\ \frac{1}{4}{{n}^{2}}{{(n+1)}^{2}}+n\end{array} \)
\(\begin{array}{l}(b)\ \frac{1}{4}{{n}^{2}}{{(n+1)}^{2}}-n\end{array} \)
\(\begin{array}{l}(c)\ \frac{1}{4}n{{(n+1)}^{2}}-n\end{array} \)
(d) none of these
Ans. (a)
Solution: The rth term of the given expression is
(r + 1) (r + ω) (r + ω2) = r3 + 1
The value of the given expression is
\(\begin{array}{l}\sum\limits_{r=1}^{n}{({{r}^{3}}+1)}=\frac{1}{4}{{n}^{2}}{{(n+1)}^{2}}+n\end{array} \)
.
Illustration 3: Find the real part of (1 – i)-i.
Sol: Let z = (1 – i)-i
Taking log on both sides, we have
\(\begin{array}{l}log\,z=-i\,lo{{g}_{e}}(1-i)\end{array} \)
\(\begin{array}{l}=-i{{\log }_{e}}\sqrt{2}\left( \cos \frac{\pi }{4}-i\sin \frac{\pi }{4} \right)\end{array} \)
\(\begin{array}{l}= -i{{\log }_{e}}(\sqrt{2}{{e}^{-i}}^{(\pi /4)})\end{array} \)
\(\begin{array}{l}=-i\left[ \frac{1}{2}{{\log }_{e}}2+{{\log }_{e}}^{-i\pi /4} \right]\end{array} \)
\(\begin{array}{l}= -i\left[ \frac{1}{2}{{\log }_{e}}2-\frac{i\pi }{4} \right]\end{array} \)
\(\begin{array}{l}= -\frac{i}{2}{{\log }_{e}}2-\frac{\pi }{4}\end{array} \)
\(\begin{array}{l}\Rightarrow \,\,\,\,\,\,\,\,\,\,\,z={{e}^{-\pi /4}}\,{{e}^{-i(log\,2)/2}}\end{array} \)
\(\begin{array}{l}\Rightarrow \,\,\,\,\,\,\,\,\,\,\,{Re}(z)={{e}^{-\pi /4}}\cos \left( \frac{1}{2}\log 2 \right)\end{array} \)
Illustration 4: If α, β and γ are the roots of x3 – 3x2 + 3x + 7 = 0 (ω is the cube roots of unity), find the value of
\(\begin{array}{l}\frac{\alpha -1}{\beta -1}+\frac{\beta -1}{\gamma -1}+\frac{\gamma -1}{\alpha -1}.\end{array} \)
Sol. We have, x3 – 3x2 + 3x + 7 = 0
\(\begin{array}{l}\Rightarrow {{(x-1)}^{3}}+8=0\end{array} \)
\(\begin{array}{l}\Rightarrow {{(x-1)}^{3}}+{{2}^{3}}=0\end{array} \)
\(\begin{array}{l}\Rightarrow (x-1+2)(x-1+2\omega )(x-1+2{{\omega }^{2}})=0\end{array} \)
\(\begin{array}{l}\Rightarrow (x+1)(x-1+2\omega )(x-1+2{{\omega }^{2}})=0\end{array} \)
\(\begin{array}{l}\therefore x=-1,1-2\omega ,1-2{{\omega }^{2}}\end{array} \)
,
\(\begin{array}{l}\Rightarrow \alpha =-1,\beta =1-2\omega ,\gamma=1-2{{\omega}^{2}}\end{array} \)
Then,
\(\begin{array}{l}\frac{\alpha -1}{\beta -1}+\frac{\beta -1}{\gamma -1}+\frac{\gamma -1}{\alpha -1}=\frac{-2}{-2\omega }+\frac{-2\omega }{-2{{\omega }^{2}}}+\frac{-2{{\omega }^{2}}}{-2}\end{array} \)
\(\begin{array}{l}=\frac{1}{\omega }+\frac{1}{\omega }+{{\omega }^{2}}={{\omega }^{2}}+{{\omega }^{2}}+{{\omega }^{2}}=3{{\omega }^{2}}\end{array} \)
Illustration 5: If z1 and z2 are 1 – i, -2 + 4i, respectively.
\(\begin{array}{l}\text{Find}\ {Im}\left( \frac{{{z}_{1}}{{z}_{2}}}{{{z}_{1}}} \right).\end{array} \)
Sol.
\(\begin{array}{l}\frac{{{z}_{1}}{{z}_{2}}}{{{z}_{1}}}=\frac{\left( 1-i \right)\left( -2+4i \right)}{1+i}=\frac{-2+2i+4i+4}{1+i}\end{array} \)
\(\begin{array}{l}=\frac{2+6i}{1+i}\times \frac{1-i}{1-i}=\frac{2+6i-2i+6}{2}=4+2i\end{array} \)
\(\begin{array}{l}\therefore {Im}\left( \frac{{{z}_{1}}{{z}_{2}}}{{{{\bar{z}}}_{1}}} \right)=2.\end{array} \)
Illustration 6: Find the square root of z = -7 – 24i.
Sol. Consider z0 = x + iy be a square root then;
\(\begin{array}{l}{{z}_{0}}^{2}=-7-24i.\end{array} \)
or
\(\begin{array}{l}-7-24i={{x}^{2}}-{{y}^{2}}+2ixy\end{array} \)
Equating real and imaginary parts, we get
\(\begin{array}{l}{{x}^{2}}-{{y}^{2}}=-7\end{array} \)
and 2xy = -24
\(\begin{array}{l}{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( {{x}^{2}}-{{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}\end{array} \)
\(\begin{array}{l}={{\left( -7 \right)}^{2}}+{{\left( -24 \right)}^{2}}=625\end{array} \)
\(\begin{array}{l}\therefore {{x}^{2}}+{{y}^{2}}=25\end{array} \)
Solving (i) and (iii), we get,
\(\begin{array}{l}\left( x,y \right)=\left( 3,-4 \right);\left( -3,4 \right)\,by\,\left( ii \right)\end{array} \)
\(\begin{array}{l}\therefore {{z}_{0}}=\pm \left( 3-4i \right)\end{array} \)
Illustration 7: If n is a positive integer and ω be an imaginary cube root of unity, prove that
\(\begin{array}{l}1+{{\omega }^{n}}+{{\omega }^{2n}}=\left\{ \begin{matrix} 3,\,when\,n\,is\,a\,multiple\,of\,3 \\ 0,when\,n\,is\,not\,a\,multiple\,of\,3 \\ \end{matrix} \right.\end{array} \)
Sol. Case: I.
\(\begin{array}{l}n=3m;m\in I\end{array} \)
\(\begin{array}{l}\therefore 1+{{\omega }^{n}}+{{\omega }^{2n}}=1+{{\omega }^{3m}}+{{\omega }^{6m}}\end{array} \)
\(\begin{array}{l}=1+1+1\left[ Since,\;\;{{\omega }^{3}}=1 \right]=3\end{array} \)
Case: II.
\(\begin{array}{l}n=3m+1\,or\,3m+2;m\in I\end{array} \)
(a) Let n = 3m + 1
\(\begin{array}{l}\therefore L.H.S=1+{{\omega }^{3m+1}}+{{\omega }^{6m+2}}=1+\omega +{{\omega }^{2}}=0\end{array} \)
(b) Let n = 3m + 2
\(\begin{array}{l}1+{{\omega }^{3m+2}}+{{\omega }^{6m+4}}=1+{{\omega }^{2}}+{{\omega }^{4}}=1+{{\omega }^{2}}+\omega =0.\end{array} \)
Illustration 8: Show that
\(\begin{array}{l}\left| \frac{z-3}{z+3} \right|=2\end{array} \)
represents a circle.
Sol. Consider z = x + iy
\(\begin{array}{l}\therefore \left| \frac{z-3}{z+3} \right|=2\Rightarrow \left| \frac{x-3+iy}{x+3+iy} \right|=2\end{array} \)
\(\begin{array}{l}{{\left| x-3+iy \right|}^{2}}={{2}^{2}}{{\left| x+3+iy \right|}^{2}}\end{array} \)
or
\(\begin{array}{l}{{\left( x-3 \right)}^{2}}+{{y}^{2}}=4\left( {{\left( x+3 \right)}^{2}}+{{y}^{2}} \right)\end{array} \)
\(\begin{array}{l}\Rightarrow 3{{x}^{2}}+3{{y}^{2}}+30x+27=0\end{array} \)
,
which represents a circle.
Illustration 9: If |z1| = |z2| = …. = |zn| = 1, prove that
\(\begin{array}{l}\left| {{z}_{1}}{{z}_{2}}+…….+{{z}_{n}} \right|=\left| \frac{1}{{{z}_{1}}}+\frac{1}{{{z}_{2}}}+…….+\frac{1}{{{z}_{n}}} \right|\end{array} \)
Sol.
\(\begin{array}{l}\left| {{z}_{j}} \right|=1\Rightarrow {{z}_{j}}{{\bar{z}}_{j}}=1\forall j=1,……,n\end{array} \)
\(\begin{array}{l}\left( Since, \;z\bar{z}=\left| {{z}^{2}} \right| \right)\end{array} \)
L.H.S.
\(\begin{array}{l}\left| {{z}_{1}}{{z}_{2}}+…….+{{z}_{n}} \right|=\left| \frac{1}{{{z}_{1}}}+\frac{1}{{{z}_{2}}}+…….+\frac{1}{{{z}_{n}}} \right|=\end{array} \)
\(\begin{array}{l}\left| \overline{\frac{1}{{{z}_{1}}}+\frac{1}{{{z}_{2}}}+\frac{1}{{{z}_{3}}}…….+\frac{1}{{{z}_{n}}}} \right|\end{array} \)
\(\begin{array}{l}=\left| \overline{\frac{1}{{{z}_{1}}}+\frac{1}{{{z}_{2}}}+\frac{1}{{{z}_{3}}}…….+\frac{1}{{{z}_{n}}}} \right|=R.H.S.\end{array} \)
Illustration 10: If |z1 + z2| = |z1 – z2|, prove that arg(z1) – arg(z2) = odd multiple of π/2.
Sol. As we know
\(\begin{array}{l}\left| z \right|=z.\bar{z}.\end{array} \)
Apply this formula and consider \(\begin{array}{l}z=r\left( \cos \theta +i\,sin\theta \right).\end{array} \)
\(\begin{array}{l}{{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}}\end{array} \)
\(\begin{array}{l}\Rightarrow \left( {{z}_{1}}+{{z}_{2}} \right)\left( {{{\bar{z}}}_{1}}+{{{\bar{z}}}_{2}} \right)=\left( {{z}_{1}}-{{z}_{2}} \right)\left( {{{\bar{z}}}_{1}}-{{{\bar{z}}}_{2}} \right)\,\,or\end{array} \)
\(\begin{array}{l}{{z}_{1}}{{\bar{z}}_{1}}+{{z}_{2}}{{\bar{z}}_{2}}+{{z}_{2}}{{\bar{z}}_{1}}+{{z}_{1}}{{\bar{z}}_{2}}={{z}_{1}}{{\bar{z}}_{1}}+{{z}_{2}}{{\bar{z}}_{2}}-{{z}_{2}}{{\bar{z}}_{1}}-{{z}_{1}}{{\bar{z}}_{2}}\end{array} \)
or
\(\begin{array}{l}2\left( {{z}_{2}}{{{\bar{z}}}_{1}}+{{z}_{1}}{{{\bar{z}}}_{2}} \right)=0;{Re}\left( {{z}_{1}}{{{\bar{z}}}_{2}} \right)=0\end{array} \)
Let
\(\begin{array}{l}{{z}_{1}}={{r}_{1}}\left( \cos {{\theta }_{1}}+i\,\sin {{\theta }_{1}} \right)\,and\,{{z}_{2}}={{r}_{2}}\left( \cos {{\theta }_{2}}+i\,\sin {{\theta }_{2}} \right);\end{array} \)
then
\(\begin{array}{l}{{z}_{1}}{{\bar{z}}_{2}}={{r}_{1}}{{r}_{2}}\left( \cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)+i\,\sin \left( {{\theta }_{1}}-{{\theta }_{2}} \right) \right)\end{array} \)
\(\begin{array}{l}\therefore \cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)=0\left( as\,{Re}\left( {{z}_{1}}{{{\bar{z}}}_{2}} \right)=0 \right)\end{array} \)
,
\(\begin{array}{l}{{\theta }_{1}}-{{\theta }_{2}}=\text{odd multiple of} \ \frac{\pi }{2}.\end{array} \)
Illustration 11: If |z – 1| < 3, prove that |iz + 3 – 5i| < 8.
Sol: Here, we have to reduce iz + 3 – 5i as the sum of two complex numbers containing z – 1 because we have to use
|z – 1| < 3.
|iz + 3 – 5i| = |iz – i + 3 – 4i| = |3 – 4i + i (z – 1) | < |3 – 4i| + |i (z – 1 )|
(by triangle inequality) < 5 + (1 . 3) =5+3= 8
Illustration 12: If (1 + x)n = a0 + a1x + a2x2+ ….+ anxn, then show that
\(\begin{array}{l}(a)\ {{a}_{0}}-{{a}_{2}}+{{a}_{4}}+….={{2}^{\frac{n}{2}}}\cos \frac{n\pi }{4}\end{array} \)
\(\begin{array}{l}(b)\ {{a}_{1}}-{{a}_{3}}+{{a}_{5}}+….={{2}^{\frac{n}{2}}}\sin \frac{n\pi }{4}\end{array} \)
Sol: Simply put x = i in the given expansion, and then by using the formula
z = r (cos θ + i sin θ) and (cos θ + i sin θ)n
= cos nθ + i sin nθ, we can solve this problem.
Put x = i in the given expansion
(1 + i)n = a0 + a1i + a2i2 + ….+ anin.
\(\begin{array}{l}{{\left[ \sqrt{2}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \right]}^{n}}\end{array} \)
= (a0 – a2 + a4 – …) + i (a1 – a3 + a5 – …)
\(\begin{array}{l}{{2}^{n/2}}\left( \cos \frac{n\pi }{4}+i\sin \frac{n\pi }{4} \right)\end{array} \)
= (a0 – a2 + a4 + …. ) + i (a1 – a3 + a5 + …)
Equating real and imaginary parts,
\(\begin{array}{l}{{2}^{\frac{n}{2}}}{{\cos }^{\frac{n\pi }{4}}}={{a}_{0}}-{{a}_{2}}+{{a}_{4}}+…..\end{array} \)
\(\begin{array}{l}{{2}^{\frac{n}{2}}}{{\sin }^{\frac{n\pi }{4}}}={{a}_{1}}-{{a}_{3}}+{{a}_{5}}+…..\end{array} \)
Therefore, (a) and (b) are proved.
Illustration 13: Solve the equation
\(\begin{array}{l}{{z}^{n-1}}=\overline{z}:n\in N\end{array} \)
Sol: Apply modulus on both sides.
\(\begin{array}{l}{{z}^{n-1}}=\overline{z};\,\,\,\,\,\,\,\,|z{{|}^{n-1}}=|\overline{z}|=|z|\end{array} \)
\(\begin{array}{l}\therefore |z|=0\,or\,|z|\,=1\,\,If\,|z|=0\,then\,z\,=\,0,\end{array} \)
,
\(\begin{array}{l}Let\left| z \right|=1;\text{then},\text{ }{{z}^{n}}=z\overline{z}=1\end{array} \)
\(\begin{array}{l}\therefore z=\cos \frac{2m\pi }{n}+\sin \frac{2m\pi }{n}:m=0,\,1,\,…..,\,n-1\end{array} \)
Illustration 14: If z = x + iy and
\(\begin{array}{l}\omega =\frac{1-iz}{z-i}\end{array} \)
with |ω| = 1, show that z lies on the real axis.
Sol: Substitute value of ω in |ω| = 1
\(\begin{array}{l}\left| \omega \right|=\left| \frac{1-iz}{z-i} \right|=1\Rightarrow |1-iz|=|z-i|\end{array} \)
or, |1 – ix + y| = |x + i(y – 1)|
or, (1 + y)2 + x2 = x2 + (y – 1)2 or, 4y = 0
Hence, z lies on the real axis.
Illustration 15: If a complex number z lies in the interior or on the boundary of a circle of radius as 3 and centre at (0, –4), then the greatest and least values of |z + 1| are,
\(\begin{array}{l}(a)\ 3+\sqrt{17},\sqrt{17}-3\end{array} \)
(b) 6, 1
\(\begin{array}{l}(c)\ \sqrt{17},1\end{array} \)
(d) 3, 1
Sol: The greatest and least value of |z + 1| means a maximum and minimum distance of the circle from the point (–1, 0). In a circle, the greatest and least distance of it from any point is along the normal.

\(\begin{array}{l}\therefore \text{Greatest distance} =\,3+\sqrt{{{1}^{2}}+{{4}^{2}}}=3+\sqrt{17}\end{array} \)
\(\begin{array}{l}\text{Least distance} =\sqrt{{{1}^{2}}+{{4}^{2}}}-3=\sqrt{17}-3\end{array} \)
Illustration 16: Find the equation of the circle for which arg
\(\begin{array}{l}\left( \frac{z-6-2i}{z-2-2i} \right)=\pi /4.\end{array} \)
Sol:
\(\begin{array}{l}\arg \left( \frac{z-6-2i}{z-2-2i} \right)=\pi /4\end{array} \)
represent a major arc of the circle, of which the line joining (6, 2)) and (2, 2) is a chord that subtends an angle π/4 at the circumference.

Clearly, AB is parallel to the real (x) axis, M is the mid-point, M ≡ (4, 2), OM = AM = 2
\(\begin{array}{l}\therefore O=(4,4)\ \text{and}\ O{{A}^{2}}=O{{M}^{2}}+A{{M}^{2}}=2\sqrt{2}\end{array} \)
The equation of the required circle is
\(\begin{array}{l}|z-4-4i|=2\sqrt{2}\end{array} \)
Illustration 17: if |z| > 3, prove that the least value of
\(\begin{array}{l}\left| z+\frac{1}{z} \right|\,is\,\frac{8}{3}\end{array} \)
.
Sol: Here,
\(\begin{array}{l}\left| z+\frac{1}{z} \right|\,\underline{>}\,|z|-\frac{1}{|z|}\end{array} \)
Now, |z| > 3
\(\begin{array}{l}\therefore \frac{1}{|z|}\underline{<}\frac{1}{3}\,or\,-\frac{1}{|z|}\underline{>}-\frac{1}{3}….(i)\end{array} \)
Adding the two like inequalities
\(\begin{array}{l}|z|-\frac{1}{|z|}\underline{>}3-\frac{1}{3}=\frac{8}{3}….(ii)\end{array} \)
Hence, from (i) and (ii), we get
\(\begin{array}{l}\left| z+\frac{1}{z} \right|\underline{>}\frac{8}{3}\end{array} \)
∴ The least value is 8/3.
Illustration 18: If z1, z2, z3 are non-zero complex numbers such that
\(\begin{array}{l}{{z}_{1}}+{{z}_{2}}+{{z}_{3}}=0\, and\,z_{1}^{-1}+z_{2}^{-1}+z_{3}^{-1}=0\end{array} \)
, then prove that the given points are the vertices of an equilateral triangle. Also, show that
|z1| = |z2| = |z3|.
Sol: Use algebra to solve this problem.
Given z1 + z2 + z3 = 0, and from 2nd relation z2z3 + z3z1 + z1z2 = 0
\(\begin{array}{l}\therefore {{z}_{2}}{{z}_{3}}=-{{z}_{1}}({{z}_{2}}+{{z}_{3}})=-{{z}_{1}}(-{{z}_{1}})=z_{1}^{2}\end{array} \)
\(\begin{array}{l}\therefore {{z}_{1}}^{3}={{z}_{1}}{{z}_{2}}{{z}_{3}}=z{{{}_{2}}^{3}}={{z}_{3}}^{3}\end{array} \)
\(\begin{array}{l}\therefore |{{z}_{1}}{{|}^{3}}=|{{z}_{2}}{{|}^{3}}=|{{z}_{3}}{{|}^{3}}\end{array} \)
Above shows that the distance of origin from A, B, and C is the sample.
Origin is circumcentre, but z1 + z2 + z3 = 0.
This implies that the centroid is also at the origin, so the triangle must be equilateral.
Illustration 19: For constant c > 1, find all complex numbers z satisfying the equation z + c |z + 1| + i = 0.
Sol: Solve this by putting z = x + iy.
Let z = x + iy
The equation z + c |z + 1| + i = 0 becomes
\(\begin{array}{l}x+iy+c\sqrt{{{(x+1)}^{2}}+{{y}^{2}}}+i=0\end{array} \)
\(\begin{array}{l}or\,x+c\sqrt{{{(x+1)}^{2}}+{{y}^{2}}}+i(y+1)=0\end{array} \)
Equating real and imaginary parts, we get
y + 1 = 0 y = –1 ….(i)
and
\(\begin{array}{l}x+c\sqrt{{{(x+1)}^{2}}+{{y}^{2}}}=0:x<0….(ii)\end{array} \)
By solving (i) and (ii), we get
\(\begin{array}{l}x+c\sqrt{{{(x+1)}^{2}}+1}=0\,or\,{{x}^{2}}={{c}^{2}}[{{(x+1)}^{2}}+1]\end{array} \)
Or (c2 – 1)x2 + 2c2x + 2c2 = 0
If c = 1, then x = –1. Let c > 1, then,
\(\begin{array}{l}x=\frac{-2{{c}^{2}}\pm \sqrt{4{{c}^{4}}-8{{c}^{2}}({{c}^{2}}-1)}}{2({{c}^{2}}-1)}=\frac{-{{c}^{2}}\pm c\sqrt{2-{{c}^{2}}}}{{{c}^{2}}-1}\end{array} \)
As x is real and c > 1, we have:
\(\begin{array}{l}1<c\le \sqrt{2}\end{array} \)
(Thus, for √2, there is no solution). Since both values of x satisfy (ii), both values are admissible.
Illustration 20: Find the sixth roots of z = 64i.
Sol:
\(\begin{array}{l}\text{Here},\ i=\cos \frac{\pi }{2}+i\sin \frac{\pi }{2}\end{array} \)
and sixth root of z
i.e., zr = z1/6.
\(\begin{array}{l}z=64\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\end{array} \)
\(\begin{array}{l}{{z}_{r}}={{z}^{1/6}}\end{array} \)
\(\begin{array}{l}=2\left( \cos \frac{2r\pi +\frac{\pi }{2}}{6}+\sin \frac{2r\pi +\frac{\pi }{2}}{6} \right)\end{array} \)
Where, r = 0, 1, 2, 3, 4, 5
The roots z0, z1, z3, z4, z5 are given by
\(\begin{array}{l}{{z}_{0}}=2\left( \cos \frac{\pi }{12}+i\sin \frac{\pi }{12} \right)\end{array} \)
\(\begin{array}{l}{{z}_{1}}=2\left( \cos \frac{5\pi }{12}+i\sin \frac{5\pi }{12} \right)\end{array} \)
\(\begin{array}{l}{{z}_{2}}=2\left( \cos \frac{9\pi }{12}+i\sin \frac{9\pi }{12} \right)\end{array} \)
\(\begin{array}{l}{{z}_{3}}=2\left( \cos \frac{13\pi }{12}+i\sin \frac{13\pi }{12} \right)=-2\left( \cos \frac{\pi }{12}+i\sin \frac{\pi }{12} \right)\end{array} \)
\(\begin{array}{l}{{z}_{4}}=2\left( \cos \frac{17\pi }{12}+i\sin \frac{17\pi }{12} \right)=-2\left( \cos \frac{5\pi }{12}+i\sin \frac{5\pi }{12} \right)\end{array} \)
\(\begin{array}{l}{{z}_{5}}=2\left( \cos \frac{21\pi }{12}+i\sin \frac{21\pi }{12} \right)=-2\left( \cos \frac{9\pi }{12}+i\sin \frac{9\pi }{12} \right)\end{array} \)
Illustration 21: Let three vertices, A, B, and C (taken in clockwise order) of an isosceles right-angled triangle with a right angle at C, be affixes of complex numbers z1, z2, z3, respectively. Show that (z1 – z2)2 = 2(z1 – z3) (z3 – z2).
Sol: Here,
\(\begin{array}{l}\frac{{{z}_{2}}-{{z}_{3}}}{{{z}_{1}}-{{z}_{3}}}={{e}^{-i\pi /2}}.\end{array} \)
Therefore, solve it using the algebra method.
Given CB = CA and angle ∠C = π/2,
\(\begin{array}{l}\frac{{{z}_{2}}-{{z}_{3}}}{{{z}_{1}}-{{z}_{3}}}={{e}^{-i\pi /2}}\end{array} \)
or (z3 – z2)2 = i2(z1 – z3)2
(z3 – z2)2 = -(z1 – z3)2
Or
\(\begin{array}{l}z_{3}^{2}+z_{2}^{2}-2{{z}_{2}}{{z}_{3}}+z_{1}^{2}+z_{3}^{2}-2{{z}_{1}}{{z}_{3}}=0\end{array} \)
Add and subtract 2z1z2, and we get
\(\begin{array}{l}z_{1}^{2}+z_{2}^{2}-2{{z}_{1}}{{z}_{2}}+2z_{3}^{2}+2{{z}_{2}}{{z}_{3}}-2{{z}_{1}}{{z}_{3}}+2{{z}_{1}}{{z}_{2}}=0,\,or\end{array} \)
\(\begin{array}{l}{{({{z}_{1}}-{{z}_{2}})}^{2}}+2({{z}_{3}}-{{z}_{1}})({{z}_{3}}-{{z}_{2}})=0,\,or\,{{({{z}_{1}}-{{z}_{2}})}^{2}}=2({{z}_{1}}-{{z}_{3}})({{z}_{3}}-{{z}_{2}}).\end{array} \)
Illustration 22: If A, B, C be the angles of a triangle, then
\(\begin{array}{l}\text{prove that}\ \left| \begin{matrix} {{e}^{2iA}} & {{e}^{-iC}} & {{e}^{-iB}} \\ {{e}^{-iC}} & {{e}^{2iB}} & {{e}^{-iA}} \\ {{e}^{-iB}} & {{e}^{-iA}} & {{e}^{2iC}} \\ \end{matrix} \right|\ \text{is purely real}.\end{array} \)
Sol: Here, A + B + C = π; therefore, epi = cos π + i sin π = –1. And by using the properties of matrices, we can solve this problem.
e-pi = –1 …. (i)
ei(B+C) = ei(π–A) = epi e–iA = –e–iA
ei(B+C)= –eiA …. (ii)
Take eiA, eiB and eiC common from R1, R2 and R3, respectively. Δ = ei(A+B+c)
\(\begin{array}{l}\,\left| \begin{matrix} {{e}^{iA}} & {{e}^{-i(A+C)}} & {{e}^{-i(A+B)}} \\ {{e}^{-i(B+C)}} & {{e}^{iB}} & {{e}^{-i(B+A)}} \\ {{e}^{-i(B+C)}} & {{e}^{-i(C+A)}} & {{e}^{iC}} \\ \end{matrix} \right|=-1\left| \begin{matrix} {{e}^{iA}} & -{{e}^{iB}} & -{{e}^{i}} \\ -{{e}^{iA}} & {{e}^{iB}} & -{{e}^{iC}} \\ -{{e}^{iA}} & -{{e}^{iB}} & {{e}^{iC}} \\ \end{matrix} \right|,by\,(ii)\end{array} \)
Take eiA, eiB and eiC common from C1, C2 and C3 and again put ei(A+B+C)=eiπ = –1
\(\begin{array}{l}\therefore \Delta =(-1)(-1)\left| \begin{matrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \\ \end{matrix} \right|\end{array} \)
Now, make two zeros and expand Δ = –4, which is purely real.
Illustration 23: Show that all the roots of the equation
\(\begin{array}{l}{{z}^{n}}cos{{q}_{0}}+{{z}^{n-1}}cos\text{ }{{q}_{1}}+{{z}^{n-2}}cos\,{{q}_{2}}+\ldots ..+z\,cos\text{ }{{q}_{n-1}}+cos\text{ }{{q}_{n}}=2\end{array} \)
lie outside the circle |z| = 1/2 where q0, q1 etc. are real.
Sol: By using triangle inequality,
\(\begin{array}{l}\left| {{z}^{n}}cos\text{ }{{q}_{0}}+{{z}^{n-1}}cos\text{ }{{q}_{1}}+{{z}^{n-2}}\text{ }cos\text{ }{{q}_{2}}\text{ }+\text{ }\ldots .\text{ }+\text{ }z\text{ }cos\text{ }{{q}_{n-1}}+cos\text{ }{{q}_{n}} \right|=2\end{array} \)
By the triangle inequality,
\(\begin{array}{l}2 = |{{z}^{n}}cos{{\theta }_{n}}+{{2}^{n-1}}cos\,{{q}_{1}}+{{2}^{n-1}}\,\cos \,{{q}_{2}}+…+z\cos \,{{q}_{n-1}}+\cos \,{{q}_{n}}|\le |{{z}^{n}}cos{{q}_{n}}|+|{{z}^{n-1}}cos\,{{q}_{1}}|\end{array} \)
+
\(\begin{array}{l}|{{z}^{n-2}}cos\,{{q}_{2}}|+….++|zcos\,{{q}_{n-1}}|+|cos\,{{q}_{n}}|=|{{z}_{n}}||cos\,{{q}_{n}}|+|{{z}^{n-1}}||cos\,{{q}_{n}}|+…+|z|cos\,{{q}_{n-1}}|+\end{array} \)
\(\begin{array}{l}|cos\,{{q}_{n}}|\,\le \,|z{{|}^{n}}+|z{{|}^{n-1}}+….+|z|+1\end{array} \)
\(\begin{array}{l}\left( Since,\;\,|cos\,{{q}_{1}}|\le 1\,and\,|{{z}^{n-1}}|=|z{{|}^{n+1}} \right)\end{array} \)
\(\begin{array}{l}=\frac{1-|z{{|}^{n+1}}}{1-|z|}<\frac{1}{1-|z|}\end{array} \)
\(\begin{array}{l}\therefore 2<\frac{1}{1-|z|}\end{array} \)
\(\begin{array}{l}sol\,1-|z|is\,positive\,and\,1-|z|\,<\frac{1}{2}\end{array} \)
\(\begin{array}{l}\therefore \,|z|>1-\frac{1}{2}=\frac{1}{2}\end{array} \)
∴ All z satisfying (i) lie outside the circle, |z| = 1/2.
Illustration 24: If z + (1/z) = 2 cos θ, prove that
\(\begin{array}{l}\left| \frac{{{z}^{2n}}-1}{{{z}^{2n}}+1} \right|=|tan\,nq|\end{array} \)
Sol: By using the formula of roots of a quadratic equation, we can solve this problem.
Here, z + 1/z = 2 cos θ
\(\begin{array}{l}\therefore {{z}^{2}}-2\cos \,\theta .\,z+1=0\end{array} \)
\(\begin{array}{l}\therefore z=\frac{2\cos \theta \pm \sqrt{4{{\cos }^{2}}\theta -4}}{2}=\cos \theta \pm i\sin \theta\end{array} \)
Taking positive the sign,
\(\begin{array}{l}\therefore \frac{1}{z}={{(cos\,\theta \,+\,i\,sin\,\theta )}^{-1}}=cos\,\theta \,-\,i\,sin\,\theta\end{array} \)
\(\begin{array}{l}\therefore \frac{{{z}^{2n}}-1}{{{z}^{2n}}+1}=\frac{{{z}^{n}}-\frac{1}{{{z}^{n}}}}{{{z}^{n}}+\frac{1}{{{z}^{n}}}}=\frac{{{(cos\theta +isin\theta )}^{n}}-{{(cos\theta -isin\theta )}^{n}}}{{{(cos\theta +isin\theta )}^{n}}+{{(cos\theta -isin\theta )}^{n}}}\end{array} \)
\(\begin{array}{l}=\frac{\cos n\theta +i\sin \theta -(cosn\theta -isin\theta )}{\cos n\theta +i\sin \theta +(cosn\theta -isinn\theta }=\frac{2i\,\sin n\theta }{2\cos n\theta }=i\tan n\theta\end{array} \)
.
Taking the negative sign,
Similarly, we get
\(\begin{array}{l}\frac{{{z}^{2n}}-1}{{{z}^{2n}}+1}=\frac{-2i\sin \,n\theta }{2\cos n\theta }=-i\tan \,n\theta\end{array} \)
\(\begin{array}{l}\therefore \left| \frac{{{z}^{2n}}-1}{{{z}^{2n}}+1} \right|=|\pm i\,tan\,nq|=|tan\,nq|,\end{array} \)
Illustration 25: Find the complex number z, which satisfies the condition |z – 2 + 2i| = 1 and has the least absolute value.
Sol: Here, z – 2 + 2i = cos θ + i sin θ; therefore, by obtaining the modulus of z, we can solve the above problem.
|z – 2 + 2i| = 1
\(\begin{array}{l}\Rightarrow \,z-2+2i=\cos \,\theta +i\,\sin \,\theta\end{array} \)
Where θ is some real numbers.
\(\begin{array}{l}\Rightarrow \,z=(2+cos\theta )+(sin\theta -2)i\end{array} \)
\(\begin{array}{l}\Rightarrow \,|z|={{[{{(2+cos\,\theta )}^{2}}+{{(sin\theta -2)}^{2}}]}^{1/2}}\end{array} \)
\(\begin{array}{l}={{[8+co{{s}^{2}}\theta +si{{n}^{2}}\theta +4(cos\theta -\sin \theta )]}^{1/2}}\end{array} \)
\(\begin{array}{l}=\,{{\left[ 9+4\sqrt{2}\cos \left( \theta +\frac{\pi }{4} \right) \right]}^{1/2}}\end{array} \)
|z| will be least if cos (θ + π/4) is least, that is, if cos (θ + π/4) = -1 or θ = 3π/4.
Thus, the least value of |z| is
\(\begin{array}{l}{{\left( 9-4\sqrt{2} \right)}^{1/2}}for\,z=\left( 2-\frac{1}{\sqrt{2}} \right)+i\left( \frac{1}{\sqrt{2}}-2 \right)\end{array} \)
Illustration 26: The area of the triangle whose vertices are represented by the complex numbers 0, z,
\(\begin{array}{l}z{e}^{i\alpha},(0<\alpha <\pi) \text{equals}\end{array} \)
Sol:
Vertices are
\(\begin{array}{l}0=0+i0,z=x+iy \text \ and \ z{{e}^{i\alpha}}\\=(x+iy)\,\,(\cos \alpha +i\sin \alpha)=(x\cos \alpha -y\sin \alpha )+i(y\cos \alpha +x\sin \alpha )\\ Area =\frac{1}{2}\,\left| \,\begin{matrix} 0 & 0 & 1 \\ x & y & 1 \\ (x\cos \alpha -y\sin \alpha )\,\,\, & (y\cos \alpha +x\sin \alpha )\,\, & 1 \\ \end{matrix}\, \right|\\=\frac{1}{2}[xy\cos \alpha +{{x}^{2}}\sin \alpha -xy\cos \alpha +{{y}^{2}}\sin \alpha ]\\=\frac{1}{2}\sin \alpha ({{x}^{2}}+{{y}^{2}})\\=\frac{1}{2}|z{{|}^{2}}\sin \alpha [\,\,|z|=\sqrt{{{x}^{2}}+{{y}^{2}}}].\\\end{array} \)
Illustration 27: The complex numbers z = x + iy which satisfy the equation
\(\begin{array}{l}\left| \frac{z-5i}{z+5i} \right|=1\ \text{lie on}\end{array} \)
Sol:
\(\begin{array}{l}\left| \frac{z-5i}{z+5i} \right|=1\\ \left| \frac{x+i(y-5)}{x+i(y+5)} \right|=1 \\ |x+i(y-5)|\,=\,|x+i(y+5)|, \left(\left| \frac{{{z}_{1}}}{{{z}_{2}}} \right|=\frac{|{{z}_{1}}|}{|{{z}_{2}}|} \right) \\ {{x}^{2}}+25-10y+{{y}^{2}}={{y}^{2}}+{{x}^{2}}+25+10y \\ 20y=0 \\ y=0\\\end{array} \)
Illustration 28: The region of the complex plane for which
\(\begin{array}{l}\left| \frac{z-a}{z+\overline{a}} \right|=1\,\,[R(a)\ne 0]\ \text{is}\end{array} \)
Sol:
We have
\(\begin{array}{l}\left| \frac{z-a}{z+\bar{a}} \right|=1 \\ |z-a|\,=\,|z+\overline{a}| \\ |z-a{{|}^{2}}=|z+\overline{a}{{|}^{2}} \\ (z-a)(\overline{z-a})=(z+\overline{a})(\overline{z+\overline{a}}) \\ (z-a)(\overline{z}-\overline{a})=(z+\overline{a})(\overline{z}+a) \\ z\overline{z}-z\overline{a}-a\overline{z}+a\overline{a}=z\overline{z}+za+\overline{a}\overline{z}+\overline{a}a \\ za+z\overline{a}+\overline{a}\overline{z}+a\overline{z}=0\, \Rightarrow (a+\overline{a})(z+\overline{z})=0 \\ z+\overline{z}=0\,\,(a+\overline{a}=2 {Re}(a)\ne 0) \\ 2 {Re}(z)=0\end{array} \)
2x = 0
x = 0, which is the equation of y-axis.
Illustration 29:
\(\begin{array}{l}\frac{3+2 i \sin \theta}{1-2 i \sin \theta}\ \text{will be purely imaginary, if}\ \theta\ \text{equals}\\ (1) 2 \mathrm{n} \pi \pm \frac{\pi}{3}\\ (2) \mathrm{n} \pi+\frac{\pi}{3}\\ (3) \mathrm{n} \pi \pm \frac{\pi}{3}\\ (4) \text { None of these}\end{array} \)
Sol:
\(\begin{array}{l}\frac{3+2 i \sin \theta}{1-2 i \sin \theta}\ \text{will be purely imaginary, if the real part vanishes}\\ \begin{array}{l} \frac{3-4 \sin ^{2} \theta}{1+4 \sin ^{2} \theta}=0 \\ \Rightarrow 3-4 \sin ^{2} \theta=0 \quad \text { (only if } \theta \text { be real) } \\ \Rightarrow \sin \theta=\pm \frac{\sqrt{3}}{2}=\sin \left(\pm \frac{\pi}{3}\right) \\ \Rightarrow \theta=n \pi+(-1)^{n}\left(\pm \frac{\pi}{3}\right)=n \pi \pm \frac{\pi}{3} \end{array}\\ Answer: [3]\end{array} \)
Illustration 30:
\(\begin{array}{l}\text{If}\ \frac{\tan \theta-i\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)}{1+2 i \sin \frac{\theta}{2}}\ \text{is purely imaginary, then general value of}\ \theta\ \text{is} -\\ (1) \mathrm{n} \pi+\frac{\pi}{4}\\ (2) 2 n \pi+\frac{\pi}{4}\\ (3) \mathrm{n} \pi+\frac{\pi}{2}\\ (4) 2 n \pi+\frac{\pi}{2}\end{array} \)
Sol:
Multiply above and below by the conjugate of the denominator and put the real part equal to zero.
\(\begin{array}{l}\begin{array}{l} =\frac{\tan \theta-i\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)}{1+2 i \sin \frac{\theta}{2}} \times \frac{1-2 i \sin \frac{\theta}{2}}{1-2 i \sin \frac{\theta}{2}} \\ =\frac{\tan \theta-2 \sin \frac{\theta}{2}\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)-i\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}+2 \tan \theta \sin \frac{\theta}{2}\right)}{1+4 \sin ^{2} \frac{\theta}{2}} \\ \therefore \tan \theta-2 \sin \frac{\theta}{2}\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)=0 \\ \Rightarrow \frac{\sin \theta}{\cos \theta}-(1-\cos \theta)-\sin \theta=0 \\ \Rightarrow \sin \theta\left(\frac{1-\cos \theta}{\cos \theta}\right)-(1-\cos \theta)=0 \\ \Rightarrow(1-\cos \theta)(\tan \theta-1)=0 \\ \cos \theta=1 \Rightarrow \theta=2 n \pi \text { and } \tan \theta=1 \Rightarrow \theta=n \pi+\frac{\pi}{4} \end{array}\\ Answer: [1]\end{array} \)
Illustration 31:
\(\begin{array}{l}\sum_{\mathrm{k}=1}^{6}\left(\sin \frac{2 \pi \mathrm{k}}{7}-\mathrm{i} \cos \frac{2 \pi \mathrm{k}}{7}\right) \text { is equal to}\\ (1) -1\\ (2) 0\\ (3) i\\ (4) -i\end{array} \)
Sol:
\(\begin{array}{l}\text { Expression } =-i \sum_{k=1}^{6}\left(\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7}\right) \\ =-i \sum_{k=1}^{6} e^{\frac{2 \pi k}{7} i} \\ =-i\left[e^{\frac{2 \pi}{7} i}+e^{\frac{4 \pi}{7} i}+\ldots \ldots e^{\frac{12 \pi}{7}}\right] \\ =-i e^{\frac{2 \pi}{7}} \frac{\left(1-e^{\frac{12 \pi}{7} i}\right)}{\left(1-e^{\frac{2 \pi}{7} i}\right)}=-i \frac{e^{\frac{2 \pi}{7}}-e^{2 \pi i}}{1-e^{\frac{2 \pi}{7}}}=i\left(\frac{1-e^{\frac{2 \pi}{7}}}{1-e^{\frac{2 \pi}{7}}}\right) \\ =i\\ Answer: [3]\end{array} \)
Complex Numbers Rapid Revision for JEE
Complex Numbers Questions for JEE Main
Quadratic Equations and Complex Numbers Important JEE Main Questions
Complex Numbers – Top 12 Most Important and Expected JEE Questions
Also, Check:
Geometry of Complex Numbers
Complex Numbers Class 11
Complex Numbers – Important Topics
Complex Numbers – Important Questions
Frequently Asked Questions
Q1
What do you mean by a complex number?
A complex number is defined as a number of the form z = p+iq, where p and q are real numbers, and i = √-1. For example, 7-2i and 1+i are complex numbers.
Q2
How to do the multiplication of two complex numbers?
Let z1 = a+ib, z2 = c+id be two complex numbers. Then, z1z2 = (a+ib)(c+id) = (ac – bd) + i(bc + ad). Always note that i2 = -1.
Q3
What do you mean by the real part and imaginary part of a complex number?
In a complex number, z = a+ib, a is called the real part and b is called the imaginary part. The real part is represented by Re z, and the imaginary part is represented by Im z.
Thank you for sharing the useful content. It will help students to prepare well for their exams.