Mean And Variance Of Random Variable

Probability distribution of a random variable is defined as a description accounting the values of the random variable along with the corresponding probabilities. In many cases we express the feature of random variable with the help of a single value computed from its probability distribution. These values can either be mean or median or mode.

Mean And Variance

Mean of random variable

Let

X
be a random variable with possible values
x1,x2,x3,…,xn
occurring with probabilities
p1,p2,p3,…,pn
, respectively. The mean of a random variable
X
, denoted by
μ
, is the weighted average of the possible values of
X
, each value being weighted by its probability of occurrence. The mean of a random variable X is also knows as expectation of
X
given by,

E(X) = Î¼ = âˆ‘i=1n xipi

=

x1p1 + x2p2 + â‹¯ + xnpn

Example

Illustration 1: Calculate the mean of the number obtained on rolling an unbiased die.

Solution: The sample space of the experiment,

S
= {1, 2, 3, 4, 5, 6}.

Let the number obtained after rolling the die be

X
. Basically,
X
is a random variable which can take any value from 1, 2, 3, 4, 5 and 6.

If

P(1)
represents probability of getting 1 after rolling the die, then

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 16

Probability distribution of X can be given as,

X 1 2 3 4 5 6
P(X)
16
16
16
16
16
16

E(X) = Î¼ = âˆ‘i=1nxipi

∑i=16 xipi = 1.16 + 2.16 + 3.16 + 4.16 + 5.16 + 6.16

=

16 + 26 + 36 + 46 + 56 + 66 = 216 = 3.5

There is an important point to note here. If each of the values of a random variable (

a1,a2,…,an
) has equal probability of occurring (
1n
), then mean is given by
(a1+a2+⋯+ann)
.

Mean of random variables with different probability distributions can have same values. Hence, mean fails to explain the variability of values in probability distribution. Therefore, variance of random variable is defined to measure the spread and scatter in data. Variance of a random variable is discussed in detail here on.

Variance of random variable

Basically, the variance tells us how spread-out the values of X are around the mean value. Variance of a random variable (denoted by

σx2
) with values
x1,x2,x3,…,xn
occurring with probabilities
p1,p2,p3,…,pn
can be given as :

Var(X) = Ïƒx2 = âˆ‘i=1n(xi âˆ’ Î¼)2pi

Var(X) = âˆ‘i=1n (xi)2pi + âˆ‘i=1n Î¼2pi âˆ’ âˆ‘i=1n 2xiμpi

Var(X) = âˆ‘i=1n (xi)2pi + Î¼2 âˆ‘ i=1n pi âˆ’ 2μ∑i=1n xipi

Here,

∑i=1nxipi = Î¼
(Mean of
X
) and
∑i=1n pi = 1
(sum of probabilities of all the outcomes of an event is 1). Substituting the values, we get

Var(X) = âˆ‘i=1n(xi)2pi + Î¼2 âˆ’ 2μ2

σx2 = Var(X) = âˆ‘i=1n (xi)2pi âˆ’ Î¼2

Var(X) = E(X2) â€“ [E(X)]2

Where,

E(X2) = âˆ‘i=1n(xi)2pi
and
E(X) = âˆ‘i=1nxipi

An illustration of application of the concept is given below.

Example

Illustration 2: Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of the number of aces.

Solution: Let

X
be a random variable denoting the number of aces. Possible values of
X
are 0, 1,2.

P(X = 0) = P(non−ace and non−ace)

=

P(non−ace) Ã— P(non−ace)

=

4852 Ã— 4852 = 144169

P(X = 1) = P(ace and non−ace or non−ace and ace)

=

P(ace and non−ace) + P(non−ace and ace)

=
P(ace) Ã— P(non−ace) + P (non−ace) Ã— P(ace)

=
452 Ã— 4852 + 4852 Ã— 452 = 24169

P(X = 2) = P (ace and ace)

=

P(ace) Ã— P(ace)

=

452 Ã— 452 = 1169

Thus, the probability distribution can be given as,

X 0 1 2
P(X)
144169
24169
1169

E(X) = Î¼ = âˆ‘i=1nxipi = 0.144169 + 1.24169 + 2.1169

=

0 + 24169 + 2169 = 26169

E(X2) = âˆ‘i=1n (xi)2pi = 02.144169 + 12.24169 + 22.1169

=

0 + 24169 + 4169 = 28169

Var(X) = E(X2) â€“ [E(X)]2 = 28169 âˆ’ (26169)2 = 24169
<

For detailed discussion on the probability distribution of random variables, download Byju’s-the learning app.

‘

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*