Rational function is the ratio of two polynomial functions where the denominator polynomial is not equal to zero. It is usually represented as R(x) = P(x)/Q(x), where P(x) and Q(x) are polynomial functions. In past grades, we learnt the concept of the rational number. It is the quotient or ratio of two integers, where the denominator is not equal to zero. Hence, the name rational is derived from the word ratio.
Definition of Rational Function
A number that can be expressed in the form of
Just like rational numbers, the rational function definition as:
Definition: A rational function R(x) is the function in the form
R(x) =
From the given condition for Q(x), we can conclude that zeroes of the polynomial function in the denominator do not fall in the domain of the function. When Q(x) = 1, i.e. a constant polynomial function, the rational function becomes a polynomial function.
Graphing Rational Functions
One very important concept for graphing rational functions is to know about their asymptotes. An asymptote is a line or curve which stupidly approaches the curve forever but yet never touches it. In fig. 1, an example of asymptotes is given.
Figure 1: Asymptotes
Asymptotes of Rational Functions
Rational functions can have 3 types of asymptotes:
- Horizontal Asymptotes
- Vertical Asymptotes
- Oblique Asymptote
Horizontal Asymptotes
This literally means that the asymptote is horizontal i.e. parallel to the axis of the independent variable. R(x) can only have a horizontal asymptote if
Degree of P(x) ≤ Degree of Q(x)
To determine the asymptotes, divide the numerator and the denominator of R(x) by
Vertical Asymptotes
R(x) will have vertical asymptotes at the zeros of Q(x). This is because at the zeros of Q(x), Q(x)=0. This means that just towards the left and right of the zero of Q(x), the value of Q will be very small negative and positive number respectively. Value of R(x) will be a largely negative and positive number respectively, towards just left and right of that point.
Oblique Asymptotes
R(x) will have oblique asymptote if it can be represented in the form
When Q(x) ≫ 0, R(x) ≈ T(x). The curve or line T(x) hence becomes an oblique asymptote.
To quote an example, let us take R(x) =
Here, the degree of P(x) is greater than that of Q(x). So, it can’t have a horizontal asymptote. But it will have a vertical asymptote at x=-1. This is because that point is the zero of its denominator polynomial.
It can also be written as R(x) =
Figure 2: A rational function with its asymptotes
To practice more problems, download BYJU’S -The Learning App.
Comments