A function is described as a relation that has one output value for every permissible or possible input value. The number “T” is the period of a function. If the number is fixed andÂ
\(\begin{array}{l}\theta\end{array} \)
is an angle we have the following periodic formula. The function sine and cosine have a period 2\(\begin{array}{l}\pi\end{array} \)
. Some of the trigonometry periodic functions are given below: \[\large Sin\left(\omega\theta\right)\Rightarrow T=\frac{2\pi}{\omega}\] \[\large Cos\left(\omega\theta\right)\Rightarrow T=\frac{2\pi}{\omega}\] \[\large Tan\left(\omega\theta\right)T=\frac{\pi}{\omega}\]Solved Example
Question: Find the period of the function
\(\begin{array}{l}cos\end{array} \)
\(\begin{array}{l}\frac{x}{3}\end{array} \)
.
Solution: Let y =Â
\(\begin{array}{l}cos\end{array} \)
\(\begin{array}{l}\frac{x}{3}\end{array} \)
Using the period formula,
T =
\(\begin{array}{l}\frac{2\pi}{\omega}\end{array} \)
The multiple of x =Â
\(\begin{array}{l}\frac{1}{3}\end{array} \)
= \(\begin{array}{l}{\omega}\end{array} \)
T =
\(\begin{array}{l}\frac{2\pi}{\frac{1}{3}}\end{array} \)
 = 6\(\begin{array}{l}\pi\end{array} \)
Hence, the period of the function
\(\begin{array}{l}cos\end{array} \)
\(\begin{array}{l}\frac{x}{3}\end{array} \)
is 6\(\begin{array}{l}\pi\end{array} \)
.
Comments