Intensive and Extensive Property

What is Intensive Property?

An intensive property is one that does not depend on the mass of the substance or system.

Temperature (T), pressure (P) and density (r) are examples of intensive properties.

Intensive Property Examples

The properties of matter that do not depend on the size or quantity of matter in any way are referred to as an intensive property of matter. Temperatures, density, color, melting and boiling point, etc., all are intensive property as they will not change with a change in size or quantity of matter. The density of 1 liter of water or 100 liters of water will remain the same as it is an intensive property.

What is Extensive property?

An extensive property of a system depends on the system size or the amount of matter in the system.

If the value of the property of a system is equal to the sum of the values for the parts of the system then such a property is called extensive property. Volume, energy, and mass are examples of extensive properties.

Extensive Property Examples

There are properties such as length, mass, volume, weight, etc. that depend on the quantity or size of the matter, these properties are called an extensive property of matter and their value changes if the size or quantity of matter changes.  Suppose we have two boxes made up of the same material, one has a capacity of four liters while the other has a capacity of ten liters. The box with ten liters capacity will have more amount of matter as compared to that of a four-liter box.

Differences between Intensive and Extensive Properties

Difference between Intensive and Extensive properties
INTENSIVE EXTENSIVE
Independent property Dependent property
Size does not change Size changes
It cannot be computed It can be computed
Can be easily identified Cannot be easily identified
Example: melting point, color, ductility, conductivity, pressure, boiling point, luster, freezing point, odor, density, etc Example: length, mass, weight, volume

Other Examples of Properties

Thermodynamics deals with the flow of heat energy. This flow of heat energy and its transformation into different forms is governed by the principles of thermodynamics. It depends on the matter and the factors that determine the state of a matter. The thermodynamic properties of a system depend on certain parameters. The parameters or variables are classified as state functions and path functions as defined below:

  1. State functions or state variables are those parameters that depend only on the current state of the system and not on the path that they have taken to reach this state.
    For e.g: Temperature of the system.
  1. A path function is a parameter that depends on the path taken by the system to reach the current state.
    For e.g: Work is done by frictional force.

A state function depends only on the initial and final conditions while a path function depends on the path taken to reach the final condition from the initial condition. The thermodynamic properties of matter are also classified as intensive and extensive properties. This classification is based on the dependence of property on the size or quantity of matter under consideration. The intensive and extensive properties of matter are discussed below.

Recommended Videos


 

The intensive and extensive properties of matter help us in determining the thermodynamic state of a system; they provide us with the coordinates that are required to find the state of matter in thermodynamic terms.  Call our mentors at Byju’s for further support on intensive and extensive properties of matter.

Leave a Comment

Your email address will not be published. Required fields are marked *