The derivative calculator is a free online tool that displays the derivative of the given function. BYJU’S online derivative calculator or differentiation calculator tool makes the calculations faster, and it shows the first, second, third-order derivatives of the function in a fraction of seconds.
How to Use the Derivative Calculator?
The procedure to use the derivative calculator (differentiation calculator) is as follows:
Step 1: Enter the function in the respective input field and choose the order of derivative
Step 2: Now click the button “Calculate” to get the derivative
Step 3: The derivative of the given function will be displayed in the new window
What is the Derivative of a Function?
In calculus, one of the basic concepts is the derivative of a function. It occupies the central concept in calculus. We know that differentiation and integration are the two important concepts. Differentiation is the process of finding the derivative of a function, whereas integration is the process of finding the antiderivative of a function. The derivative of a function describes the rate of change. That means that it shows the amount by which the function is changing at the given point.
Standard Form
The standard form to represent the derivative of a function is given below:
An infinitesimal change in the variable “x” is denoted by dx. Thus, the derivative of the variable “y” with respect to the variable “x” is given by dy/dx.
Solved Examples on Derivatives
Example 1:
Find the first derivative of f(x) = 8x2 + 12x.
Solution:
Given function: f(x) = 8x2 + 12x.
Now, differentiating the function with respect of x, we get
(d/dx) (8x2 + 12x) = (d/dx) (8x2 ) + (d/dx)(12x)
(d/dx) (8x2 + 12x) = 16x + 12
Therefore, the first order derivative of the function 8x2 + 12x is 16x + 12.
Example 2:
Find the third derivative of f(x) = 14x4 – 2x.
Solution:
Given function: f(x) = 14x4 – 2x
Now, differentiate the function with respect to x, we get
First derivative:
(d/dx)(14x4 – 2x) = (d/dx)(14x4) – (d/dx)(2x)
(d/dx)(14x4 – 2x) = 56x3 – 2
Second derivative:
(d2/dx2)(14x4 – 2x) = 168x2 – 0
Third derivative:
(d3/dx3)(14x4 – 2x) = 336x.
Therefore, the third derivative of f(x) = 14x4 – 2x is 336x.
Example 3:
Find the fifth derivative of f(x) = 6x7 + 5x3 – 2x.
Solution:
Given function: f(x) = 6x7 + 5x3 – 2x.
To find the derivatives of the given function, differentiate the function with respect to x.
First derivative:
(d/dx)(6x7 + 5x3 – 2x) = (d/dx)(6x7) + (d/dx)(5x3) – (d/dx)(2x)
(d/dx)(6x7 + 5x3 – 2x) = 42x6 + 15x2 – 2
Second derivative:
(d2/dx2)(6x7 + 5x3 – 2x) = 252x5 + 30x – 0
Third derivative:
(d3/dx3)(6x7 + 5x3 – 2x) = 1260x4 + 30
Fourth derivative:
(d4/dx4)(6x7 + 5x3 – 2x) = 5040x3 + 0
Fifth Derivative:
(d5/dx5)(6x7 + 5x3 – 2x) = 15120x2
Hence, the fifth derivative of f(x) = 6x7 + 5x3 – 2x is 15120x2.
Also, check out: Implict Differentiation Calculator.
Frequently Asked Questions on The derivative calculator
What is the derivative of zero?
In calculus, differentiation is the process of finding the derivative of a function. We know that the differentiation of any constant value is zero. Thus, the derivative of 0 is 0.
What are the different methods to find the derivatives?
The different methods to find the derivative of a function are as follows:
- Calculating the derivative by definition
- Product Rule
- Chain Rule
- Implicit Differentiation
- Quotient Rule
Define the first and second-order derivative.
Graphically, the first-order derivative defines the slope of the given function at a point. The second-order derivative explains how the slope changes over the independent variable for the given function.
Comments