ICSE Class 8 Maths Selina Solutions for Chapter 17 Special Types of Quadrilaterals

A quadrilateral is a four-sided figure in 2-dimensional space made up of four line segments. The most common types of quadrilaterals are Squares and Rectangles. In the primary classes, we have studied the basic quadrilaterals. But in this Chapter, you will learn about special types of quadrilaterals. ICSE Class 8 maths Selina Solution Chapter 17 “Special types of Quadrilaterals” explains about parallelograms, rectangle, square, trapezium, and rhombus. The questions asked from this chapter is mostly related to the properties of different types of quadrilaterals.

The solutions of this chapter have been prepared by BYJU’S experts and students should practice these questions so that they can clear all their doubts. In your final exam paper, you’ll definitely find some of the questions asked from this chapter. Students can download the pdf format of ICSE Selina Solution Class 8 Maths “Special types of Quadrilaterals” solution from the link provided below.

Download ICSE Class 8 Maths Selina Solutions Chapter 17:-Download Here

icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 01
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 02
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 03
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 04
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 05
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 06
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 07
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 08
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 09
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 10
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 11
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 12
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 13
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 14
icse class 8 maths may3 selina solutions chapter 17 special types of quadrilaterals 15

Chapter 17 Special Types of Quadrilaterals consists of a total of 15 questions and the solutions of all these questions are provided below:

CHAPTER 17 – SPECIAL TYPES OF QUADRILATERALS

Exercise

Question 1. 

In parallelogram ABCD, ∠A = 3 times ∠B. Find all the angles of the parallelogram. In the same parallelogram if AB = 5x – 7 and CD = 3x + 1; find the length of CD.

Solution:-

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 1

Let ∠B=x

∠A=3∠B=3x

AD||BC

∠A+∠B=180°

3x+x=180°

⇒4x=180°

⇒x=45°

∠B=45°

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 2

Opposite angles of parallelogram are equal.

∠A=∠C=135°

Opposite sides of parallelogram are equal.

AB=CD

5x-7=3x+1

⇒5x-3x=1+7

⇒2x=8

⇒x=4

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 3

Question 2.

In parallelogram PQRS, ∠Q = (4x – 5)° and ∠S = (3x + 10)° . Calculate: ∠Q and ∠R.

Solution:-

 In parallelogram PQRS,

∠Q = (4x – 5)° and ∠S = (3x + 10)°

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 4

Opposite ∠s of parallelogram are equal

∠Q=∠S

4x-5=3x+10

4x-3x=10+5

x=15

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 5

Question 3.

In rhombus ABCD:

(i) If ∠A=74°; find ∠B and ∠C.

(ii) If AD=7.5cm; find BC and CD.

Solution:-

AD‖BC

∠A+∠B=180°

74°+∠B=180°

∠B=180°-74°=106°

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 6

Opposite angles of Rhombus are equal.

∠A=∠C=74°

Sides of Rhombus are equal.

BC=CD=AD=7.5cm

(i) ∠B=106°; ∠C=74°

(ii) Ans:  BC=7.5cm and CD=7.5cm

Question 4

In square PORS:

(i) If PQ = 3x – 7 and QR = x + 3; find PS

Solution:-

(i) Sides of square are equal.

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 7

PQ=QR

3x-7=x+3

3x-x=3+7

2x=10

x=5

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 8

Solution:-

(ii) PR = 5x and QR = 9x – 8.

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 9

PR=QS

5x=9x-8

⇒5x-9x=-8

⇒-4x=-8

⇒x=2

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 10

Question 5.

ABCD is a rectangle, if ∠BPC = 124°

Calculate: (1) ∠BAP (ii) ∠ADP

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 11

Solution:-

Diagonals of rectangle are equal and bisect each other.

∠PBC=∠PCB=x (say)

But ∠BPC+∠PBC+∠PCB=180°

124°+x+x=180°

2x=180°-124°

2x=56°

⇒x=28°

∠PBC=28°

But ∠PBC=∠ADP [Alternate ∠S]

∠ADP=28°

Again ∠APB=180°-124°=56°

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 12

Question 6. 

ABCD is a rhombus. If ∠BAC = 38°, find:

(i) ∠ACB

(ii) ∠DAC

(iii) ∠ADC

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 13

Solution:-

ABCD is Rhombus (Given)

AB = BC ∠BAC = ∠ACB (∠S opp. to equal sides)

But ∠BAC = 38° (Given)

∠ACB = 38°

In ΔABC, ∠ABC + ∠BAC + ∠ACB = 180°

∠ABC + 38°+ 38° = 180°

∠ABC = 180°- 76° = 104°

∠ADC = ∠ABC (Opp.∠s of rhombus)

∠ADC = 104°∠DAC = ∠DCA (AD = CD)

∠DAC= ½ [180° – 104°]

∠DAC = ½ × 76° = 38°

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 14

Question 7.

ABCD is a rhombus. If ∠BCA = 35°. Find ∠ADC.

Solution:-

 Given: Rhombus ABCD in which ∠BCA = 35°

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 15

To find: ∠ADC

Proof: AD II‖BC

∠DAC = ∠BCA (Alternate ∠S)

But ∠BCA = 35° (Given)

∠DAC = 35°

But ∠DAC = ∠ACD (AD = CD) & ∠DAC + ∠ACD + ∠ADC = 180°

∠B° + 35° + ∠ACD = 180°

∠ADC = 180° – 70° = 110°

Hence ∠ADC = 110°

Question 8.

PQRS is a parallelogram whose diagonals intersect at M.

∠PMS=54°, ∠OSR=25° and ∠SOR=30°;

(i) ∠RPS

(ii) ∠PRS

(iii) ∠PSR

Solution:-

Given: Parallelogram PQRS in which diagonals PR 8 OS intersect at M.

∠PMS=54°; ∠OSR=25° and ∠SQR=30°

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 16

To find: (i) ∠RPS (ii) ∠PRS (iii) ∠PSR

Proof: QR II PS

⇒>PSQ=∠SQR (Alternate ∠S)

But ∠SOR=30°

∠PSQ=30°

In ΔSMP,

∠PMS+∠PSM+∠MPS=180° or 54°+30°+∠RPS=180°

∠RPS=180°-84°=96°

Now, ∠PRS+∠RSQ=∠PMS

∠PRS+25°=54°

∠PRS=54°-25°=29°

∠PSR=∠PSQ+∠RSQ=30°+25°=55°

Hence, (i) ∠RPS=96° (ii) ∠PRS=29° (iii) ∠PSR=55°

Question 9.

Given: Parallelogram ABCD in which diagonals AC and BD intersect at M. Prove: M is mid-point of LN.

Solution:-

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 17

Proof: Diagonals of parallelogram bisect each other

MD= MB

Also ∠ADB=∠DBN (Alternate ∠S)

&∠DML=∠BMN (ert. opp. ∠S)

ΔDML=ΔBMN

LM=MN

M is mid-point of LN.

Hence proved.

Question 10

In an isosceles-trapezium, show that the opposite angles are supplementary.

Solution:

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 18

Given: ABCD is isosceles trapezium in which AD = BC

To Prove: (i) ∠A + ∠C = 180

(ii) ∠ B + ∠D = 180°

Proof: AB ‖ CD

⇒∠A + ∠D = 180

But ∠A = ∠B [Trapezium is isosceles)]

∠B + ∠D = 180°

Similarly ∠A + ∠C = 180°

Hence the result.

 Question 11.

ABCD is a parallelogram. What kind of quadrilateral is it if:

(i) AC=BD and AC is perpendicular to BD?

(ii) AC is perpendicular to BD but is not equal to it?

(iii) AC=BD but AC is not perpendicular to BD?

Solution:-

(i)

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 19

AC=BD (Given)

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 20

I.e. Diagonals of quadrilateral are equal and they

Are perpendicular to each other.

∴ABCD is square

(ii)

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 21

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 22

But AC&BD are not equal

∴ABCD is a Rhombus.

(iii)

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 23

AC=BD but AC&BD are not ⊥ r to each other.

∴ABCD is a Rectangle.

Question 12. 

Prove that the diagonals of a parallelogram bisect each other.

Solution:-

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 24

Given: Parallelogram ABCD in which diagonals AC and BD bisect each other.

 To Prove: OA=OC and OB=OD

Proof: AB‖CD (Given)

∠1=∠2 (Alternate ∠S)

∠3=∠4= (Alternate ∠S

And AB=CD (opposite sides of parallelogram)

ΔCOD=ΔAOB (A.S.A rule)

OA=OC and OB=OD

Hence the result.

 Question 13. 

If the diagonals of a parallelogram are of equal lengths, the parallelogram is a rectangle. Prove it.

Solution:-

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 25

Given: parallelogram ABCD in which AC=BD

To Prove: ABCD is rectangle

Proof: In ∆ABC and ∆ABD

AB=AB (Common)

AC=BD (Given)

BC=AD (Opposite sides of parallelogram)

ΔABC=ΔABD (S.S.S. Rule)

∠A=∠B

But AD //BC (opp. sides of ll gm are

∠A+∠B=180°

∠A=∠B=90°

Similarly ∠D=∠C=90°

Hence ABCD is a rectangle.

 Question 14. 

In parallelogram ABCD, E is the mid-point of AD and F is the mid-point of BC. Prove that BFDE is a parallelogram.

Solution:-

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 26

Given: Parallelogram ABCD in which E and F are mid-points of AD and BC

 To Prove: BFDE is a parallelogram.

 Proof: E is mid-point of AD. (Given)

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 27

BF=DE

Again AD‖BC

DE‖BF

NowDE ‖BF and DE=BF

Hence BFDE is a parallelogram.

Question 15.

In parallelogram ABCD, E is the mid-point of side AB and CE bisects angle BCD. Prove that:

(i) AE=AD.

(ii) DE bisects and ∠ADC and

(iii) Angle DEC is a right angle.

Solution:-

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 28

Given: ||gm ABCD in which E is mid-point of AB and CE bisects ZBCD.

To Prove: (i) AE=AD

(ii) DE bisects ∠ADC

(iii) ∠DEC=90°

Const. Join DE

Proof: (i) AB‖CD (Given)

And CE bisects it.

∠1=∠3 (Alternate ∠S)…… (i)

But ∠1=∠2 (Given) ……… (ii)

From (i) & (ii)

∠2=∠3

BC=BE (Sides opp. to equal angles)

But BC=AD (opp. sides of ‖gm)

and BE=AE( Given )

AD=AE

∠4=∠5 (∠S opp. to equal sides)

But ∠5=∠6 (alternate ∠S

⇒∠4=∠6

 DE bisects ∠ADC.

NOW AD //BC

⇒∠D+∠C=180°

2∠6+2∠1=180°

DE and CE are bisectors.

ICSE Class 8 Maths Selina Solutions Chapter 17 Image 29

ICSE Class 8 Maths Selina Solutions Chapter 17 – Special Types of Quadrilaterals

In the earlier chapter, you have studied about understanding of shapes, theorems, etc. In Chapter 17 Special types of Quadrilaterals, you get to know about different types of quadrilaterals, its properties, formulas to solve the problems, etc. The concepts were explained beautifully in a detailed manner along with suitable examples wherever it’s needed. Also, the solutions provided here is from the exercises mentioned in the chapter. Students should solve these questions and if they have any doubt they can refer to the solutions.

Click on ICSE Class 8 Selina Solutions to access the answers of Physics, Chemistry and Biology subjects provided at one place. To access interactive Maths and Science Videos download BYJU’S App and subscribe to YouTube Channel.

Leave a Comment

Your Mobile number and Email id will not be published. Required fields are marked *

*

*

BOOK

Free Class