Selina Solutions Concise Maths Class 7 Chapter 4 Decimal Fractions (Decimals) Exercise 4D mainly discusses the concept of terminating, non terminating and recurring decimals. The method of converting them and the steps to be followed are explained in simple language for a better understanding among students. Students can improve their time management skills by solving problems using the solutions designed by faculty at BYJUâ€™S. Selina Solutions Concise Maths Class 7 Chapter 4 Decimal Fractions (Decimals) Exercise 4D, PDF links are available below.

## Selina Solutions Concise Maths Class 7 Chapter 4: Decimal Fractions (Decimals) Exercise 4D Download PDF

### Access other exercises of Selina Solutions Concise Maths Class 7 Chapter 4: Decimal Fractions (Decimals)

### Access Selina Solutions Concise Maths Class 7 Chapter 4: Decimal Fractions (Decimals) Exercise 4D

**1. Find whether the given division forms a terminating decimal or a non-terminating decimal: **

**(i) 3 Ã· 8**

**(ii) 8 Ã· 3**

**(iii) 6Ã· 5**

**(iv) 5 Ã· 6**

**(v) 12.5 Ã· 4**

**(vi) 23 Ã· 0.7**

**(vii) 42 Ã· 9**

**(viii) 0.56Ã· 0.11**

**Solution:**

**(i) 3 Ã· 8We know that**

**3 Ã· 8 = 0.375**

**Therefore, it is terminating decimal.**

**(ii) 8 Ã· 3We know that**

**8 Ã· 3 = 2.666**

**Therefore, it is a non-terminating decimal.**

**(iii) 6 Ã· 5We know that**

**6 Ã· 5 = 1.2**

**Therefore, it is terminating decimal.**

**(iv) 5 Ã· 6We know that**

**5 Ã· 6 = 0.8333**

**Therefore, it is non-terminating decimal.**

**(v) 12.5 Ã· 4We know that**

**12.5 Ã· 4 = 3.125**

**Therefore, it is terminating decimal. **

**(vi) 23 Ã· 0.7Multiplying by 10 we get**

**230 Ã· 7 = 32.8571428**

**Therefore, it is non-terminating decimal.**

**(vii) 42 Ã· 9We know that**

**42 Ã· 9 = 4.666 **

**Therefore, it is non-terminating decimal.**

**(viii) 0.56 Ã· 0.11**

**Multiplying by 100**

**56 Ã· 11 = 5.0909**

**Therefore, it is non-terminating decimal.**

**2. Express as recurring decimals:**

**(i) 1 1/3**

**(ii) 10/11**

**(iii) 5/6**

**(iv) 2/13**

**(v) 1/9**

**(vi) 17/90**

**(vii) 5/18**

**(viii) 7/12**

**Solution:**

**(i) 1 1/3**

**It can be written as**

**1 1/3 = 4/3 **

**(ii) 10/11**

**It can be written as**

**10/11 = 0.909090â€¦ **

**(iii) 5/6**

**It can be written as**

**5/6 = 0.8333â€¦. **

**(iv) 2/13**

**It can be written as**

**2/13 = 0.153846153846 **

**(v) 1/9**

**It can be written as**

**1/9 = 0.1111 â€¦. **

**(vi) 17/90**

**It can be written as**

**17/90 = 0.1888 **

**(vii) 5/18**

**It can be written as**

**5/18 = 0.2777 â€¦ **

**(viii) 7/12**

**It can be written as**

**7/12 = 0.58333â€¦. **

**3. Convert into vulgar fraction:**

**Solution:**

**It can be written as**

**= 3/9**

**So we get**

**= (3 â€“ 0)/ 9**

**= 3/9**

**= 1/3**

**It can be written as**

**= 8/9**

**So we get**

**= (8 â€“ 0)/ 9 **

**= 8/9**

**It can be written as**

**= 44/9**

**So we get**

**= (44 â€“ 4)/ 9**

**= 40/9**

**= 4 4/9**

**It can be written as**

**= 237/9**

**So we get**

**= (237 â€“ 23)/ 9**

**= 214/9**

**= 23 7/9**

**4. Convert into vulgar fraction:**

**Solution:**

**It can be written as**

**= 35/99**

**So we get**

**= (35 â€“ 0)/ 99 **

**= 35/99**

**It can be written as**

**So we get**

**= 2 + (23 â€“ 0)/ 99**

**On further calculation**

**= 2 + 23/99**

**= 2 33/99**

**It can be written as**

**So we get**

**= 1 + (28 â€“ 0)/ 99**

**On further calculation**

**= 1 + 28/99**

**= 1 28/99**

**It can be written as**

**So we get**

**= 5 + (234 â€“ 0)/ 999**

**On further calculation**

**= 5 234/999**

**5. Convert into vulgar fraction:**

**Solution:**

**It can be written as**

**= (37 â€“ 3)/ 90**

**So we get**

**= 34/90**

**= 17/45**

**It can be written as**

**= (245 â€“ 2)/ 990**

**So we get**

**= 243/990**

**On further calculation**

**= 81/330**

**= 27/110**

**It can be written as**

**= (685 â€“ 68)/ 900**

**So we get**

**= 617/ 900**

**It can be written as**

**= (442 â€“ 4)/ 990**

**So we get**

**= 438/ 990**

**= 219/ 495**