The ISC Class 12 Physics exam is considered one of the vital papers in the exam. Students who wish to appear for competitive exams, like JEE and NEET, and make a career in the engineering or medical field must study this subject hard to excel. The ISC is known for its comprehensive syllabus and well-structured curriculum. Students who are going to appear in the ISC exam must know the ISC Syllabus for Class 12 thoroughly to score well in the exam.
Download ISC Class 12 Physics Syllabus 2023-24 PDF
The ISC Class 12 Physics Syllabus is given here in a detailed manner to help students prepare in an organised and effective way. But before going into the syllabus, have a look at the paper pattern.
ISC Class 12 Physics Paper Pattern
The ISC Class 12 Physics paper is divided into two papers, as mentioned below.
- Theory Paper: It consists of 70 marks. Students are allotted 3 hours of time duration to complete the paper.
- Practicals: The practicals are conducted in 3 hours of time duration. It includes
Practical work – 15 Marks
Project work – 10 Marks
Practical files – 5 Marks
To know the detailed marking scheme, visit the ISC Class 12 Physics Marking Scheme page at BYJU’S.
ISC Class 12 Physics Syllabus (Theory Paper)
1. Electrostatics
(i) Electric Charges and Fields
Electric charges; conservation and quantisation of charge, Coulomb’s law; superposition principle and continuous charge distribution.
Electric field, electric field due to a point charge, electric field lines, electric dipole, electric field due to a dipole, torque on a dipole in uniform electric field.
Electric flux, Gauss’s theorem in Electrostatics and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell.
(ii) Electrostatic Potential, Potential Energy and Capacitance
Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges; equipotential surfaces, electrical potential energy of a system of two point charges and of electric dipole in an electrostatic field.
Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarisation, capacitors and capacitance, combination of capacitors in series and in parallel. Capacitance of a parallel plate capacitor, energy stored in a capacitor.
2. Current Electricity
Mechanism of flow of current in conductors. Mobility, drift velocity and its relation with electric current; Ohm’s law and its proof, resistance and resistivity and their relation to drift velocity of electrons; V-I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity. Temperature dependence of resistance and resistivity.
Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel, Kirchhoff’s laws and simple applications, Wheatstone bridge, metre bridge. Potentiometer – principle and its applications to measure potential difference, to compare emf of two cells; to measure internal resistance of a cell.
3. Magnetic Effects of Current and Magnetism
(i) Moving charges and magnetism
Concept of magnetic field, Oersted’s experiment. Biot – Savart law and its application. Ampere’s Circuital law and its applications to infinitely long straight wire, straight solenoid (only qualitative treatment).
Force on a moving charge in uniform magnetic and electric fields. Force on a current-carrying conductor in a uniform magnetic field, force between two parallel current-carrying conductors-definition of ampere, torque experienced by a current loop in uniform magnetic field; moving coil galvanometer – its sensitivity. Conversion of galvanometer into an ammeter and a voltmeter.
(ii) Magnetism and Matter
A current loop as a magnetic dipole, its magnetic dipole moment, magnetic dipole moment of a revolving electron, magnetic field intensity due to a magnetic dipole (bar magnet) on the axial line and equatorial line, torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid, magnetic field lines. Electromagnets and factors affecting their strengths, permanent magnets.
4. Electromagnetic Induction and Alternating Currents
(i) Electromagnetic Induction
Faraday’s laws, induced emf and current; Lenz’s Law, eddy currents. Self-induction and mutual induction. Transformer.
(ii) Alternating Current
Peak value, mean value and RMS value of alternating current/voltage; their relation in sinusoidal case; reactance and impedance; LC oscillations (qualitative treatment only), LCR series circuit, resonance; power in AC circuits, wattless current. AC generator.
5. Electromagnetic Waves
Basic idea of displacement current. Electromagnetic waves, their characteristics, their transverse nature (qualitative ideas only). Complete electromagnetic spectrum starting from radio waves to gamma rays: elementary facts of electromagnetic waves and their uses.
6. Optics
(i) Ray Optics and Optical Instruments
Ray Optics: Reflection of light by spherical mirrors, mirror formula, refraction of light at plane surfaces, total internal reflection and its applications, optical fibres, refraction at spherical surfaces, lenses, thin lens formula, lens maker’s formula, magnification, power of a lens, combination of thin lenses in
contact, combination of a lens and a mirror, refraction and dispersion of light through a prism.
Optical instruments: Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers.
(ii) Wave Optics
Wave front and Huygen’s principle. Proof of laws of reflection and refraction using Huygen’s principle. Interference, Young’s double slit experiment and expression for fringe width(β), coherent sources and
sustained interference of light, Fraunhofer diffraction due to a single slit, width of central maximum.
7. Dual Nature of Radiation and Matter
Wave particle duality; photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation – particle nature of light. Matter waves – wave nature of particles, de-Broglie relation.
8. Atoms and Nuclei
(i) Atoms
Alpha-particle scattering experiment; Rutherford’s atomic model; Bohr’s atomic model, energy levels, hydrogen spectrum.
(ii) Nuclei
Composition and size of nucleus. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number; Nuclear reactions, nuclear fission and nuclear fusion.
9. Electronic Devices
(i) Semiconductor Electronics: Materials, Devices and Simple Circuits. Energy bands in conductors, semiconductors and insulators (qualitative ideas only). Intrinsic and extrinsic semiconductors.
(ii) Semiconductor diode: I-V characteristics in forward and reverse bias, diode as a rectifier; Special types of junction diodes: LED, photodiode and solar cell.
10. Communication Systems
Elements of a communication system (block diagram only); bandwidth of signals (speech, TV and digital data); bandwidth of transmission medium. Modes of propagation of electromagnetic waves in the atmosphere through sky and space waves, satellite communication. Modulation, types (frequency
and amplitude), need for modulation and demodulation, advantages of frequency modulation over amplitude modulation. Elementary ideas about internet, mobile network and global positioning system (GPS).
Self-explanatory- qualitative only.
Stay tuned to BYJU’S to get the latest news and notification on the ICSE Class 12 exam, along with the exam pattern syllabus, timetable and more.
Comments