Euler's Formula And De Moivre's Theorem

Euler’s formula:

Euler’s formula states that ‘For any real number \(x\), \(e^{ix}\) = \(cos~x~+~i ~sin~x\).

Let z be a non zero complex number; we can write \(z\) in the polar form as,

\(z\) = \(r(cos~θ~+~i~ sin~θ)\) = \(r~e^{iθ}\), where \(r\) is the modulus and \(θ\) is argument of \(z\).

    • Multiplying a complex number \(z\) with \(e^{iα}\) gives, \(ze^{iα}\) = \(re^{iθ}~×~e^{iα}\) = \(re^{i(α~+~θ)}\)The resulting complex number \(re^{i(α+θ)}\) will have the same modulus \(r\) and argument \((α+θ)\).

Euler’s Formula And De Moivre’s Theorem

De Moivre’s theorem:

It states that for any integer \(n\),

\((cos ~θ~+~i ~sin~ θ)^n\) = \(cos~ (nθ)~+~i ~sin~ (nθ)\)

This can be easily proved using Euler’s formula as shown below.

We know that, \((cos~ θ~+~i ~sin ~θ)\) = \(e^{iθ}\)

\((cos~ θ~+~i ~sin~ θ)^n\) = \(e^{i(nθ)}\)

Therefore,

\(e^{i(nθ)}\) = \(cos ~(nθ)~+~i~ sin~ (nθ)\)

\(n^{th}\) roots of unity

If any complex number satisfies the equation \(z^n\) = \(1\), it is known as \(n^{th}\) root of unity.

Fundamental theorem of algebra says that, an equation of degree \(n\) will have \(n\) roots. Therefore, there are \(n\) values of \(z\) which satisfies \(z^n\) = \(1\).

To find the values of \(z\), we can write,

\(1\) = \(cos ~(2kπ)~ + ~i ~sin~ (2kπ)\), —(1) where k can be any integer.

We have,  

                                      \(z^n\) = \(1\)

\(z\) = \(1^\frac{1}{n}\)

From (1),

\(z\) = \([cos~ (2kπ)~+~i~ sin~ (2kπ)]^{\frac{1}{n}}\)

By De Moivre’s theorem,

\(z\) = \([cos~ \left({2kπ}{n}\right)~+~i ~sin~ \left(\frac{2kπ}{n}\right)]\), where \(k\) = \(0, 1, 2, 3, …….., n-1\)

For example; if \(n\) = \(3\), then \(k\) = \(0, 1, 2\)

We know that, \(z\) = \(cos~ \left({2kπ}{n}\right)~+~i ~sin~ \left(\frac{2kπ}{n}\right)\) = \(e^{\frac{2kπi}{n}}\)

Let \(ω\) = \(cos~ \left(\frac{2π}{n}\right)~+i~ sin ~\left(\frac{2π}{n}\right)\) = \(e^{\frac{2πi}{n}}\)

\(n^{th}\) roots of unity are found by,

When \(k\) = \(0\); \(z\) = \(1\)

\(k\) = \(1\); \(z\) = \(ω\)

\(k\) = \(2\); \(z\) = \(ω^2\)

\(k\) = \(n\); \(z\) = \(ω^{n~-~1}\)

Therefore, \(n^{th}\) roots of unity are \(1, ω, ω^2, ω^3,…….,ω^{n~-~1}\)

  • Sum of \(n^{th}\) roots of unity is,\(1~+~ω~+~ω^2~+~ω^3~+~⋯~+~ω^{n~-~1}\)It is geometric series having first term 1 and common ratio \(ω\).By using sum of \(n\) terms of a G.P,\(1~+~ω~+~ω^2~+~ω^3~+~⋯~+~ω^{n~-~1}\) = \(\frac{1~-~ω^n}{1~-~ω}\)Since \(ω\) is \(n^{th}\) root of unity, \(ω^n\) = \(1\)Therefore, \(1~+~ω~+~ω^2~+~ω^3~+~⋯~+~ω^{n~-~1}\) = \(0\)

Cube roots of unity:

We know that \(n^{th}\) roots of unity are \(1, ω, ω^2, ω^3,…….,ω^{n~-~1}\).

Therefore, cube roots of unity are \(1, ω, ω^2\) where,

\(ω\) = \(cos ~\left(\frac{2π}{3}\right)~+~i~ sin~ \left(\frac{2π}{3}\right)\) = \(\frac{-1~+~√3~ i}{2}\)

\(ω^2\) = \(cos \left(\frac{4π}{3}\right)~+~i~ sin~ \left(\frac{4π}{3}\right)\) = \(\frac{-1~-~√3~ i}{2}\)

Sum of the cube roots of the unity,

\(1~+~ω~+~ω^2\) = \(0\)

Product of cube roots of the unity,

\(1~×~ω~×~ω^2\) = \(ω^3\) = \(1\)

Example: \(a\) and \(b\) are the roots of the equation \(x^2~+~x~+~1\) = \(0\), Find the value of \(a^{17}~+~b^{20}\)

Roots of the equation are

\(a\) = \(\frac{-1~+~√{1~-~4}}{2}\) = \(\frac{-1~+~√{3i}}{2}\)

\(b\) = \(\frac{-1~-~√3~i}{2}\)

Values of \(a\) and \(b\) are equal to \(ω\) and \(ω^2\) respectively.

\(a^{17}~+~b^{20}\) = \(ω^{17}~+~(ω^2)^{20}\) = \(ω^{17}~+~ω^{40}\) = \(ω^2~+~ω\)

[Since \(ω^{17}\) = \(ω^{15}~×~ω^2\) and \(ω^{40}\) = \(ω^{39}~×~ω\)]

[And, since \(1~+~ω~+~ω^2\) = \(0\)]

Therefore,

\(a^{17}~+~b^{20}\) = \(-1\)<

To know more about complex numbers and its properties, log onto www.byjus.com and learn things easily.


Practise This Question

If α0,α1,α2,αn1 be the n, nth roots of the unity, then the value of n1i=0αi(3αi) is equal to