Integral is the method to sum the functions on a large scale. Hence, here we have discussed integrals of some particular functions which are usually used for calculations. These integrals have huge applications in real life, such as finding the area between curves, volume, the average value of the function, kinetic energy, center of mass, work-done, etc.

We have already discussed the Integration of functions, Methods of Integration, Integration of Trigonometric functions, Integration of Inverse trigonometric functions, etc.

In this article, you will learn the integration of some of the important functions and see their use in many other standard integrals.

Integrals of Some Particular Functions

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.

S.No Integral function Integral value
1
dxx2a2
12alog|xax+a|+C
2
dxa2x2
12alog|a+xax|+C
3
dxx2+a2
1atan1(xa)+C
4
dxx2a2
log|x+x2a2|+C
5
dxa2x2
sin1(xa)+C
6
dxx2+a2
log|x+x2+a2|+C

Also, see:

Proofs of Integrals Functions

Let us now prove the integration of particular functions.

Integral of function 1

(1)

dxx2a2=12alog|xax+a|+C

The integral function can be splitted into the sums of partial fraction, i.e.

dxx2a2=dx(xa)(x+a)=A(xa).dx+B(x+a).dx
……………(i)

Solving for values of A and B, we have,

1=A(x+a)+B(xa)
,

Putting x = a and then -a, we get the values of A and B to be

12a
and
12a
respectively.

Substituting these values in (i), we have

dxx2a2=dx2a(xa)+dx2a(x+a)

=12a[dx(xa)dx(x+a)]

=12a[log|xa|log|x+a|]+C

=12alog|xax+a|+C

Integral of function 2

(2)

dxa2x2=12alog|a+xax|+C

Breaking function into the sums of partial fraction, we have

dxa2x2=Aax.dx+Ba+x.dx

Solving for values of A and B, we have

dxa2x2=dx2a(ax)+dx2a(a+x)

=12a[dx(ax)+dx(a+x)]

=12a[log|ax|+log|a+x|]+C

=12alog|a+xax|+C

Integral of function 3

(3)

dxx2+a2=1atan1(xa)+C

Substituting

x=atanθ
……….(i)

dx=asec2θ.dθ

dxx2+a2=asec2θ.dθa2tan2θ+a2

=1asec2θ.dθ sec2θ=1adθ

=1aθ+C
………………(ii)

From (i), we know

θ=tan1xa
,

therefore

dxx2+a2=1atan1xa+C

Integral of function 4

(4)

dxx2a2=log|x+x2a2|+C

Substituting

x=asecθ
 ……….(i)

dx=asecθtanθ.dθ

dxx2a2=asecθtanθ.dθa2sec2θa2

=asecθtanθ.dθatan2θ

=secθ.dθ

=log|secθ+tanθ|+C1
……….(ii)

from (i) we know

secθ=xa
and
tanθ=sec2θ1=x2a21

Substituting these values in equation (ii), we have

dxx2a2=log|xa+x2a21|+C1

=log|x+x2a2a|+C1

=log|x+x2a2|log|a|+C1

<p

=log|x+x2a2|+C
,(where
C=C1+log|a|
)

Integral of function 5

(5)

dxa2x2=sin1(xa)+C

Putting

x=asinθ

dx=acosθ.dθ

dxa2x2=acosθ.dθa2a2sin2θ

=acosθ.dθa1sin2θ

=acosθ.dθacosθ=dθ

=θ+C

=sin1xa+C

Integral of function 6

(6)

dxx2+a2=log|x+x2+a2|+C

Putting

x=atanθ
…………….(i)

dx=asec2θdθ

dxx2+a2=asec2θdθa2tan2θ+a2

=asec2θdθatan2θ+1=asec2θdθasec2θ

=secθ.dθ

=log|secθ+tanθ|+c
……………….(ii)

From (i), we have

tanθ=xa
and
secθ=tan2θ+1=x2a2+1

Putting these value in (ii), we get

dxx2+a2=log|xa+x2a2+1|+c

=log|x+x2+1a|+c

=log|x+x2+1|loga+c

=log|x+x2+1|+C
 (where
C=cloga
)

These standard formulae can be used to obtain new formulae and can be applied directly to evaluate other integrals.

Integral of Some More Functions

We have already discussed the integrals of the first six functions with proofs. Let us see integral of some more functions.

Integral of function 7

(7)

dxax2+bx+c

the denominator can be written as

ax2+bx+c=a[x2+bax+ca]=a[(x+b2a)2+(cab24a2)]

Substituting

x+b2a=t
, so
dx=dt

Also

cab24a2=±k2

Hence the integral becomes,

dxax2+bx+c=1adtt2±k2

Integral of function 8

(8)

px+qax2+bx+c.dx

where p,q,a,b,c are constants

px+q=Addx(ax2+bx+c)=A(2ax+b)+B

we equate the coefficient of x of both the sides to determine the value of A and B, and hence the integral is reduced to one of the known forms.

Example Based on Integral of Function

Example: Find the Integral of the function
dx7x22x
.

Solution:The given function can be converted into the standard form

dx7x22x=dx7.x227x

=17dx(x17)2(17)2
(completing the squares)

Substituting

x17=t
, so dx = dt

therefore

dx7x22x=17dtt2(17)2

=17log|t+t2(17)2|+C

=17log|x17+(x17)2(17)2|+C

=17log|x17+x227x|+C
<

Go through the another example given below:

Example 2: Find the integral of given function ∫x-3(x + 1)dx

Solution:

Consider the function, 

f(x) = x-3(x + 1) 

= (x + 1)/x3

= (x/x3) + (1/x3)

= (1/x2) + (1/x3)

Now,

∫x-3(x + 1)dx = ∫ (1/x2) + (1/x3) dx

= (-1/x) + (-1/2x2) + C

= -(1/x) – (1/2x2) + C

Therefore, ∫x-3(x + 1)dx = -(1/x) – (1/2x2) + C

Integrals of Some Functions Questions

  1. Find the integral of the given function: ∫dx/(3x2 + 13x – 10)
  2. Find the integral of the given function: ∫dx/√(2x – x2)
  3. Evaluate: √(x + 3)/√(5 – 4x + x2) dx

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*