Relations and its types concepts are one of the crucial algebra topics in mathematics. In this lesson, all the concepts related to relations are covered including different types of relations in maths with solved examples.

**What are Relations?**

A relation in mathematics defines the relationship between two different sets of information. If two sets are considered, the relation between them will be established if there is a connection between the elements of two or more non-empty sets.

In the morning assembly at schools, students are supposed to stand in a queue in ascending order of the heights of all the students. This defines an ordered relation between the students and their heights.

Therefore, we can say,

**‘A set of ordered pairs is defined as a relation.’**

This mapping depicts a relation from set A into set B. A relation from A to B is a subset of.The ordered pairs are (1,c),(2,n),(5,a),(7,n).For defining a relation, we use the notation where .

The set {1, 2, 5, 7} represents the domain.

The set {a, c, n} represents the range.

**Types of Relations**

There are 8 main types of relations which include:

- Empty Relation

- Universal Relation

- Identity Relation

- Inverse Relation

- Reflexive Relation

- Symmetric Relation

- Transitive Relation

- Equivalence Relation

### Empty Relation

An empty relation (or void relation) is one in which there is no relation between any elements of a set. For example, if set A = {1, 2, 3} then, one of the void relations can be R = {x, y} where, |x – y| = 8. For empty relation,

**R = φ ⊂ A × A**

### Universal Relation

A universal (or full relation) is a type of relation in which every element of a set is related to each other. Consider set A = {a, b, c}. Now one of the universal relations will be R = {x, y} where, |x – y| ≥ 0. For universal relation,

**R = A × A**

### Identity Relation

In an identity relation, every element of a set is related to itself only. For example, in a set A = {a, b, c}, the identity relation will be I = {a, a}, {b, b}, {c, c}. For identity relation,

**I = {(a, a), a A}**

### Inverse Relation

Inverse relation is seen when a set has elements which are inverse pairs of another set. For example if set A = {(a, b), (c, d)}, then inverse relation will be R^{-1} = {(b, a), (d, c)}. So, for an inverse relation,

**R ^{-1} = {(b, a): (a, b) ∈ R}**

**Reflexive Relation**

In a reflexive relation, every element maps to itself. For example, consider a set A = {1, 2,}. Now an example of reflexive relation will be R = {(1, 1), (2, 2), (1, 2), (2, 1)}. The reflexive relation is given by-

**(a, a) ∈ R**

**Symmetric Relation**

In a symmetric relation, if a=b is true then b=a is also true. In other words, a relation R is symmetric only if (b, a) ∈ R is true when (a,b) ∈ R. An example of symmetric relation will be R = {(1, 2), (2, 1)} for a set A = {1, 2}. So, for a symmetric relation,

**aRb ⇒ bRa, ∀ a, b ∈ A**

**Transitive Relation**

For transitive relation, if (x, y) ∈ R, (y, z) ∈ R, then (a, z) ∈ R. For a transitive relation,

**aRb and bRc ⇒ aRc ∀ a, b, c ∈ A**

**Equivalence Relation**

If a relation is reflexive, symmetric and transitive at the same time it is known as an equivalence relation.

**Summary:**

Relation Type | Condition |
---|---|

Empty Relation | R = φ ⊂ A × A |

Universal Relation | R = A × A |

Identity Relation | I = {(a, a), a A} |

Inverse Relation | R^{-1} = {(b, a): (a, b) ∈ R} |

Reflexive Relation | (a, a) ∈ R |

Symmetric Relation | aRb ⇒ bRa, ∀ a, b ∈ A |

Transitive Relation | aRb and bRc ⇒ aRc ∀ a, b, c ∈ A |

### Example Question From Relations and Its Types

**Example:** Let A be the set of all the Honda city cars manufactured by Honda. A relation in set A is given by caris congruent to car Determine whether the defined relation is reflexive, symmetric and transitive.

**Solution:**

Since all cars of the same design are same in shape and size, we can say that for every, .Therefore it represents a reflexive relation. Now for every, and b=a as the cars are exactly same. Hence, R is symmetric. Also some other car c of the same model will also be equal to car a and b. It implies that ⇒. It is also transitive.

Hence, R is an equivalence relation.