A perfectly symmetrical 3 – Dimensional circular shaped object is a Sphere. The line that connects from the center to the boundary is called radius of the square. You will find a point equidistant from any point on the surface of a sphere. The longest straight line that passes through the center of the sphere is called the diameter of the sphere. It is twice the length of the radius of the sphere.

## Formulas of a Sphere

There are four main formulas for a sphere which include sphere diameter formula, sphere circumference formula, sphere surface area, and sphere volume area. All these formulas are mentioned in the table given below and an example is also prodided here.

Sphere Formulas | |
---|---|

Diameter of a Sphere | D = 2 r |

Circumference of a Sphere | C = 2 π r |

Surface Area of a Sphere | A = 4 π r^{3} |

Volume of a Sphere | V = (4 ⁄ 3) π r^{3} |

### Solved Examples Using Formulas of a Sphere

**Question:Â **Calculate the diameter, circumference, surface area and volume of a sphere of radius 9 cm ?

**Solution:**

Given,

**r = 7 cm**

**Diameter of a sphere
**=2r

= 2 Ã— 9

=18 cm

**Circumference of a sphere**

= 2Ï€r

= 2 Ã— Ï€ Ã— 9

= 56.54 cm

**Surface area of a sphere**

**Volume of a sphere**

More topics inÂ Sphere Formula | |

Volume of a Sphere Formula | Surface Area of a Sphere Formula |