Linear algebra questions with solutions are provided here for practice and to understand what is linear algebra and its application to solving problems. Linear algebra is a branch of mathematics that deals with vectors, vector spaces, and linear functions which operate on vectors and follow vector addition.

Following are the main topics under linear algebra:

  • Matrices and determinants
  • Vector Spaces
  • System of linear equations
  • Linear transformations
  • Inner product spaces
  • Diagonalizations and quadratic forms

We shall practice a few problems based on these topics.

Learn more about linear algebra and its applications.

Linear Algebra Questions with Solutions

Let us solve a few questions based on linear algebra.

Question 1:

Show that the matrix A is unitary matrix

\(\begin{array}{l}A=\frac{1}{5}\begin{bmatrix}-1+2i & -4-2i \\ 2-4i& -2-i \\\end{bmatrix}\end{array} \)

Solution:

A matrix is said to be unitary if and only if AA* = A*A = I, where A* is the transpose of the conjugate of A.

Given,

\(\begin{array}{l}A=\frac{1}{5}\begin{bmatrix}-1+2i & -4-2i \\ 2-4i& -2-i \\\end{bmatrix}\end{array} \)

Transpose of A

\(\begin{array}{l}A^{T}=\frac{1}{5}\begin{bmatrix}-1+2i & 2-4i \\ -4-2i& -2-i \\\end{bmatrix}\end{array} \)

\(\begin{array}{l}A^{*}=\overline{A^{T}}=\frac{1}{5}\begin{bmatrix}-1-2i & 2+4i \\ -4+2i& -2+i \\\end{bmatrix}\end{array} \)

Now,

\(\begin{array}{l}AA^{*}=\frac{1}{25}\begin{bmatrix}-1+2i & -4-2i \\2-4i & -2-i \\\end{bmatrix}\begin{bmatrix}-1-2i & 2+4i \\ -4+2i& -2+i \\\end{bmatrix}\end{array} \)

\(\begin{array}{l}=\frac{1}{25}\begin{bmatrix}1+4+16+4 & 0\\0 & 4+16+4+1 \\\end{bmatrix}\end{array} \)

\(\begin{array}{l}\therefore AA^{*}=\begin{bmatrix}1 & 0 \\0 & 1 \\\end{bmatrix}=I\end{array} \)

Similarly, we can show that A*A = I

Hence, A is a unitary matrix.

Also refer: Types of Matrices

Question 2:

Find the rank and the nullity of the following matrix:

\(\begin{array}{l}\begin{bmatrix}1 & -2 & -1 & 4 \\2 & -4 & 3 & 5 \\-1 & 2 & 6 & -7 \\\end{bmatrix}\end{array} \)

Solution:

To find the rank and nullity of the given matrix, we transform the given matrix into a row-reduced echelon form, by performing elementary transformations.

Let

\(\begin{array}{l}A=\begin{bmatrix}1 & -2 & -1 & 4 \\2 & -4 & 3 & 5 \\-1 & 2 & 6 & -7 \\\end{bmatrix}\end{array} \)

Applying R2 → R2 – 2R1 and R3 → R3 + R1

\(\begin{array}{l}A~\begin{bmatrix}1 & -2 & -1 & 4 \\0 & 0 & 5 & -3 \\0 & 0 & 5 & -3 \\\end{bmatrix}\end{array} \)

Applying C2 → C2 + 2C1, C3 → C3 + C1 and C4 → C4 – 4C1

\(\begin{array}{l}A~\begin{bmatrix}1 & 0 & 0 & 0 \\0 & 0 & 5 & -3 \\0 & 0 & 5 & -3 \\\end{bmatrix}\end{array} \)

Applying R3 → R3 – R2

\(\begin{array}{l}A~\begin{bmatrix}1 & 0 & 0 & 0 \\0 & 0 & 5 & -3 \\0 & 0 & 0 & 0 \\\end{bmatrix}\end{array} \)

Applying R2 → (⅕)R2

\(\begin{array}{l}A~\begin{bmatrix}1 & 0 & 0 & 0 \\0 & 0 & 1 & -3/5 \\0 & 0 & 0 & 0 \\\end{bmatrix}\end{array} \)

Applying C4 → C4 + (⅗)C3

\(\begin{array}{l}A~\begin{bmatrix}1 & 0 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 0 \\\end{bmatrix}\end{array} \)

∴ number of non-zero rows of the row-reduced echelon form of A = rank of A = 2

number of zero rows of the row-reduced echelon form of A = nullity of A = 2

Learn more about rank and nullity.

Question 3:

Solve the following system of linear equations:

x + y + z = 6

x + 2y + 3z = 14

x + 4y + 7z = 30

Solution:

The given linear equations can be written in the form of a matrix equation AX = B, where

\(\begin{array}{l}A=\begin{bmatrix}1 & 1 & 1 \\1 & 2 & 3 \\1 & 4 & 7 \\\end{bmatrix}, X = \begin{bmatrix}x \\y \\z\end{bmatrix}\:\:and\:\:B=\begin{bmatrix}6 \\14 \\30\end{bmatrix}\end{array} \)

The augmented matrix [A| B] is-

\(\begin{array}{l}[A|B]=\begin{bmatrix}1 & 1 & 1 &|6 \\1 & 2 & 3&|14 \\1 & 4 & 7 &|30 \\\end{bmatrix}\end{array} \)

We reduce the given matrix to row echelon form by applying elementary row transformations

Applying R2 → R2 – R1, R3 → R3 – R1

\(\begin{array}{l}[A|B]\sim \begin{bmatrix}1 & 1 & 1 &|6 \\0 & 1& 2&|8 \\0 & 3 & 6&|24 \\\end{bmatrix}\end{array} \)

Applying R3 → R3 – 3R2

\(\begin{array}{l}[A|B]\sim \begin{bmatrix}1 & 1 & 1 &|6 \\0 & 1& 2&|8 \\0 & 0 & 0&|0 \\\end{bmatrix}\end{array} \)

Since, Rank of A = Rank of [A : B] = 2 < number of unknowns

∴ the given system of linear equations has an infinite number of solutions.

Thus, we get from the row reduced echelon form matrix

x + y + z = 6 ….(i)

y + 2z = 8

⇒ y = 8 – 2z putting this value of y in (i), we get

x + 8 – 2z + z = 6

⇒ x – z = –2

⇒ x = z – 2

Now taking different values of z will give different values of the given system of equations.

Also Read:

Question 4:

Show that the set V = {(x, y) ∈ R2 | xy ≥ 0} is not a vector space of R2.

Solution:

For V to be a vector space, it is required that V must be closed under addition, that is for any x and y in V, x + y ∈ V

Let ( – 1, 0) and (0, 1) ∈ V

Now, ( – 1, 0) + (0, 1) = ( –1 + 0, 0 + 1) = ( –1, 1)

But, –1 × 1 = –1 < 0 ⇒ ( –1, 1) ∉ V.

∴ V is not a vector space in R2.

Question 5:

Find the eigenvalues of

\(\begin{array}{l}A= \begin{bmatrix}0 & 1 & 0 \\0 & 0 & 1 \\4 & -17 & 8 \\\end{bmatrix}\end{array} \)

Solution:

Given

\(\begin{array}{l}A= \begin{bmatrix}0 & 1 & 0 \\0 & 0 & 1 \\4 & -17 & 8 \\\end{bmatrix}\end{array} \)

The characteristic polynomial is given by

\(\begin{array}{l}det(A-\lambda I) = det\begin{bmatrix}-\lambda & -1&0 \\ 0& -\lambda & 1 \\4 & -17 & 8-\lambda \\\end{bmatrix}=\lambda ^{3}-8\lambda^{2}+17\lambda-4\end{array} \)

Eigenvalues of A are the roots of the above cubic equation,

𝜆3 – 8𝜆2 + 17𝜆 – 4 = 0

⇒ (𝜆 – 4)(𝜆2 – 4𝜆 + 1) = 0

Solving this we get,

𝜆 = 4, 𝜆 = 2 ±√3

These are the eigenvalues of A.

Also check: Eigenvalues and Eigenvectors

Question 5:

Determine whether the following vector is linearly dependent or linearly independent: (1, 2, –3, 1), (3, 7, 1, –2), (1, 3, 7, –4).

Solution:

The vectors could form the column vectors of matrix A. We shall find the rank of A by reducing it to row echelon form.

\(\begin{array}{l}A=\begin{bmatrix}1 & 3 & 1 \\2 & 7 & 3 \\-3 & 1 & 7 \\1 & -2 & -4 \\\end{bmatrix}\end{array} \)

Applying R2 → R2 – 2R1, R3 → R3 + 3R1, and R4 → R4 – R1

\(\begin{array}{l}A\sim \begin{bmatrix}1 & 3 & 1 \\0 & 1 & 1 \\0 & 10 & 10 \\0 & -5 & -5 \\\end{bmatrix}\end{array} \)

Applying R3 → R3 – 10R2, R4 → R4 + 5R2

\(\begin{array}{l}A\sim \begin{bmatrix}1 & 3 & 1 \\0 & 1 & 1 \\0 & 0 & 0 \\0 & 0 & 0 \\\end{bmatrix}\end{array} \)

Clearly, rank of A = 2 < number of column vectors. So, the given vectors are linearly dependent.

Question 6:

Verify whether the polynomials x3 – 5x2 – 2x + 3, x3 – 1, x3 + 2x + 4 are linearly independent.

Solution:

We may construct a matrix with coefficients of x3, x2, x, and constant terms.

\(\begin{array}{l}A=\begin{bmatrix}1 & 1 & 1 \\-5 & 0 & 0 \\-2 & 0 & 2 \\3 & -1 & 4 \\\end{bmatrix}\end{array} \)

To find the rank of A let us reduce it to row echelon form by applying elementary transformations

Applying R2 → R2 + 5R1, R3 → R3 + 2R1, and R4 → R4 – 3R1

\(\begin{array}{l}A\sim \begin{bmatrix}1 & 1 & 1 \\0 & 5 & 5 \\0 & 2 & 4 \\0 & -4 & 1 \\\end{bmatrix}\end{array} \)

Applying R2 → (⅕) R2

\(\begin{array}{l}A\sim \begin{bmatrix}1 & 1 & 1 \\0 & 1 & 1 \\0 & 2 & 4 \\0 & -4 & 1 \\\end{bmatrix}\end{array} \)

Applying R3 → R3 – 2R2, R4 → R4 + 4R2

\(\begin{array}{l}A\sim \begin{bmatrix}1 & 1 & 1 \\0 & 1 & 1 \\0 & 0 & 2 \\0 & 0 & 5 \\\end{bmatrix}\end{array} \)

Applying R4 → R4 – (5/2)R3

\(\begin{array}{l}A\sim \begin{bmatrix}1 & 1 & 1 \\0 & 1 & 1 \\0 & 0 & 2 \\0 & 0 & 0 \\\end{bmatrix}\end{array} \)

∴ rank of A = 3 = number of column vectors. So the given vectors are linearly independent.

Question 7:

Show that the following matrix is diagonalizable:

\(\begin{array}{l}A=\begin{bmatrix}1 & 0 & -1 \\1 & 2 & 1 \\2 & 2 & 3 \\\end{bmatrix}\end{array} \)

Solution:

First, we shall find the eigenvalues of A. The characteristic equation of A is given by:

\(\begin{array}{l}|A-\lambda I|=\begin{vmatrix}1-\lambda & 0 & -1 \\1 & 2-\lambda & 1 \\2 & 2 & 3-\lambda \\\end{vmatrix}=0\end{array} \)

⇒ (1 – 𝜆)(2 – 𝜆)(3 – 𝜆) = 0

⇒ 𝜆 = 1, 2, 3.

The eigenvector corresponding to 𝜆1 = 1 is the non-zero solution of the following matrix equation:

(A – 1I)X = 0

\(\begin{array}{l}\Rightarrow \begin{bmatrix}0 & 0 & -1 \\1 & 1 & 1 \\2 & 2 & 2 \\\end{bmatrix}\begin{bmatrix}x \\y \\z\end{bmatrix}=\begin{bmatrix}0 \\0 \\0\end{bmatrix}\end{array} \)

Applying elementary transformation R3 → R3 – 2R2 and R2 → R2 + R1, we get

\(\begin{array}{l}\Rightarrow \begin{bmatrix}0 & 0 & -1 \\1 & 1 & 0 \\0 & 0 & 0 \\\end{bmatrix}\begin{bmatrix}x \\y \\z\end{bmatrix}=\begin{bmatrix}0 \\0 \\0\end{bmatrix}\end{array} \)

\(\begin{array}{l}\Rightarrow \begin{bmatrix}-z \\x+y \\0\end{bmatrix}=\begin{bmatrix}0 \\0 \\0\end{bmatrix}\end{array} \)

⇒ z = 0, x + y = 0

If we take x = 1 ⇒ y = –1

Hence, the corresponding eigen-vector X1 = [1 –1 0]T.

Similarly, the eigenvector corresponding to 𝜆 = 2 is given by:

\(\begin{array}{l}\Rightarrow \begin{bmatrix}-1 & 0 & -1 \\1 & 0 & 1 \\2 & 0 & 1 \\\end{bmatrix}\begin{bmatrix}x \\y \\z\end{bmatrix}=\begin{bmatrix}0 \\0 \\0\end{bmatrix}\end{array} \)

Applying elementary transformation R3 → R3 – R2 and R2 → R2 + R1, we get

\(\begin{array}{l}\Rightarrow \begin{bmatrix}-1 & 0 & -1 \\0 & 0 & 0 \\1 & 2 & 0 \\\end{bmatrix}\begin{bmatrix}x \\y \\z\end{bmatrix}=\begin{bmatrix}0 \\0 \\0\end{bmatrix}\end{array} \)

\(\begin{array}{l}\Rightarrow \begin{bmatrix}-x-z \\0 \\x+2y\end{bmatrix}=\begin{bmatrix}0 \\0 \\0\end{bmatrix}\end{array} \)

⇒ x + z = 0, x + 2y = 0

⇒ x = –2, y = 1 and z = 2 {taking y = 1}

Hence, the corresponding eigen-vector X2 = [ –2 1 2]T.

Finally, the eigenvector corresponding to 𝜆 = 3 is the non-zero solution of the following matrix equation:

\(\begin{array}{l}\Rightarrow \begin{bmatrix}-2 & 0 & -1 \\1 & -1 & 1 \\2 & 2 & 0 \\\end{bmatrix}\begin{bmatrix}x \\y \\z\end{bmatrix}=\begin{bmatrix}0 \\0 \\0\end{bmatrix}\end{array} \)

Applying elementary transformation R2 → R2 + R1 and R3 → R3 + 2R2, we get

\(\begin{array}{l}\Rightarrow \begin{bmatrix}-2 & 0 & -1 \\-1 & -1 & 0 \\0 & 0 & 0 \\\end{bmatrix}\begin{bmatrix}x \\y \\z\end{bmatrix}=\begin{bmatrix}0 \\0 \\0\end{bmatrix}\end{array} \)

⇒ 2x + z = 0, x + y = 0

On taking x = 1, we get x = 1, y = –1 and z = –2

Hence, the corresponding eigen-vector X3 = [ 1 –1 –2]T.

Let us construct a matrix with these eigenvectors as its column vectors, we get

\(\begin{array}{l}P=\begin{bmatrix}1 & -2 & 1 \\-1 & 1 & -1 \\0 & 2 & -2 \\\end{bmatrix}\end{array} \)

Inverse of P is

\(\begin{array}{l}P^{-1}=\frac{1}{2}\begin{bmatrix}0 & -2 & 1 \\-2 & -2 & 0 \\-2 & -2 & -1 \\\end{bmatrix}\end{array} \)

Now,

\(\begin{array}{l}P^{-1}AP=\frac{1}{2}\begin{bmatrix}0 & -2 & 1 \\-2 & -2 & 0 \\-2 & -2 & -1 \\\end{bmatrix}\begin{bmatrix}1 & 0 & -1 \\1 & 2 & 1 \\2 & 2 & 3 \\\end{bmatrix}\begin{bmatrix}1 & -2 & 1 \\-1 & 1 & -1 \\0 & 2 & -2 \\\end{bmatrix}\end{array} \)

\(\begin{array}{l}=\begin{bmatrix}1 & 0 & 0 \\0 & 2 & 0 \\0 & 0 & 3 \\\end{bmatrix}\end{array} \)

= diag(1, 2, 3)

Thus, A is diagonalizable.

Refer: Diagonalization

Question 8:

Show that the transformation T: V2(R) → V2(R) defined by T(a, b) = (a + b, a) ∀ a, b ∈ R is a linear transformation.

Solution:

To show that T is a linear transformation, we need to prove that,

For any x, y ∈ V2(R)

T(x + y) = T(x) + T(y) and T(ax) = aT(x) where a is a scalar in field.

Let (x1, y1) and (x2, y2) are arbitrary elements of V2(R)

T[(x1, y1) + (x2, y2)] = T[(x1 + x2, y1 + y2)] = (x1 + x2 + y1 + y2, x1 + x2) …..(i)

T(x1, y1) + T(x2, y2) = (x1 + y1, x1) + (x2 + y2, x2) = (x1 + x2 + y1 + y2, x1 + x2) …..(ii)

From (i) and (ii), we get T[(x1, y1) + (x2, y2)] = T(x1, y1) + T(x2, y2)

Now, T[a(x1, y1)] = T(ax1, ay2) = (ax1 + ay1, ax1) = a(x1 + y1, x1) = aT(x1, y1).

∴ T is a linear transformation.

Question 9:

Show that the given subset of vectors of R3 forms a basis for R3.

{(1, 2, 1), (2, 1, 0), (1, –1, 2)}

Solution:

S = {(1, 2, 1), (2, 1, 0), (1, –1, 2)}

We know that any set of n linearly independent vectors forms the basis of n-dimensional vector space.

Now, dim R3 = 3, we just need to prove that vectors in S are linearly independent.

Let

\(\begin{array}{l}A=\begin{bmatrix}1 & 2 & 1 \\2 & 1 & -1 \\1 & 0 & 2 \\\end{bmatrix}\end{array} \)

We reduce this matrix to row echelon form to check the rank of A.

Applying R2 → R2 + (–2)R1 and R3 → R3 + ( –1)R1, we get

\(\begin{array}{l}A\sim\begin{bmatrix}1 & 2 & 1 \\0 & -3 & -3 \\0 & -2 & 1 \\\end{bmatrix}\end{array} \)

Applying R2 → ( –⅓)R2 and R3 → R3 + 2R2, we get

\(\begin{array}{l}A\sim\begin{bmatrix}1 & 2 & 1 \\0 & 1 & 1 \\0 & 0 & 3 \\\end{bmatrix}\end{array} \)

Clearly, rank of A = 3 = number of vectors.

Thus, the given vectors are linearly independent.

⇒ S forms the basis of R3.

Question 10:

Given a linear transformation T on V3(R) defined by T(a, b, c) = (2b + c, a – 4b, 3a) corresponding to the basis B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Find the matrix representation of T.

Solution:

Now, T(1, 0, 0) = (2 × 0 + 0, 1 – 4 × 0, 3 × 1) = (0, 1, 3)

= 0(1, 0, 0) + 1(0, 1, 0) + 3(0, 0, 1)

T(0, 1, 0) = (2 × 1 + 0, 0 – 4 × 1, 3 × 0) = (2, –4, 0)

= 2(1, 0, 0) –4(0, 1, 0) + 0(0, 0, 1)

And T(0, 0, 1) = (2 × 0 + 1, 0 – 4 × 0, 3 × 0) = (1, 0, 0)

= 1(1, 0, 0) + 0(0, 1, 0) + 0(0, 0, 1)

Then, the matrix representation of T with respect to the basis B is

\(\begin{array}{l}[T ; B] = \begin{bmatrix}0 & 2 & 1 \\1 & -4 & 0 \\3 & 0 & 0 \\\end{bmatrix}\end{array} \)

Related Articles

Conjunction Questions

Complex Numbers Questions

Differentiation Questions

Function Questions

Practice Problems on Linear Algebra

1. Show that the following matrix is diagonalizable:

\(\begin{array}{l}A=\begin{bmatrix}8 & -8 & -2 \\4 & -3 & -2 \\3 & -4 & 1 \\\end{bmatrix}\end{array} \)

2. Show that the transformation T: V3(R) → V2(R) defined by T(a, b, c) = (b, c) ∀ a, b, c ∈ R is a linear transformation.

3. Show that the given subset of vectors of R3 forms a basis for V3(R).

{(1, 0, –1), (1, 2, 1), (0, –3, 2)}.

4. Given a linear transformation T on V3(R) defined by T(a, b, c) = (2b + c, a – 4b, 3a) corresponding to the basis B = {(1, 1, 1), (1, 1, 0), (1, 0, 0)}. Find the matrix representation of T.

To learn more linear algebra concepts and to practice more questions download BYJU’S – The Learning App and explore many more study resources with video lessons and personalized notes.