Ncert Solutions For Class 12 Maths Ex 5.3

Ncert Solutions For Class 12 Maths Chapter 5 Ex 5.3

Q1: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(2x+3y=\sin x\)

Sol:

The given relationship is \(2x+3y=\sin x\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(2x+3y)=\frac{\mathrm{d} }{\mathrm{d} x}(\sin x)\) \(\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x} (2x) + \frac{\mathrm{d} }{\mathrm{d} x}(3y)=\frac{\mathrm{d} }{\mathrm{d} x}(\sin x)\) \(\Rightarrow 2 + 3\frac{\mathrm{d} y}{\mathrm{d} x}=\cos x\) \(\Rightarrow 3\frac{\mathrm{d} y}{\mathrm{d} x}=\cos x-2\)

\(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\cos x-2}{3}\).

Q2: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(2x+3y=\sin y\).

Sol:

The given relationship is \(2x+3y=\sin y\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(2x+3y)=\frac{\mathrm{d} }{\mathrm{d} x}(\sin y)\) \(\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x} (2x) + \frac{\mathrm{d} }{\mathrm{d} x}(3y)=\frac{\mathrm{d} }{\mathrm{d} x}(\sin y)\) \(\Rightarrow 2 + 3\frac{\mathrm{d} y}{\mathrm{d} x}=\cos y \frac{\mathrm{d} y}{\mathrm{d} x}\) \(\Rightarrow 2=(\cos y-3) \frac{\mathrm{d} y}{\mathrm{d} x}\)

\(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2}{\cos y -3}\).

Q3: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(ax+by^{2}=\cos y\).

Sol:

The given relationship is \(ax+by^{2}=\cos y\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(ax+by^{2})=\frac{\mathrm{d} }{\mathrm{d} x}(\cos y)\) \(\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x} (ax) + \frac{\mathrm{d} }{\mathrm{d} x}(by^{2})=\frac{\mathrm{d} }{\mathrm{d} x}(\cos y)\) \(\Rightarrow a + 2by\frac{\mathrm{d} y}{\mathrm{d} x}=-\sin y \frac{\mathrm{d} y}{\mathrm{d} x}\) \(\Rightarrow a=-(\sin y+2by) \frac{\mathrm{d} y}{\mathrm{d} x}\)

\(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{-a}{(\sin y+2by )}\).

Q4: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(xy+y^{2}=\tan x+ y\).

Sol:

The given relationship is \(xy+y^{2}=\tan x+ y\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(xy+y^{2})=\frac{\mathrm{d} }{\mathrm{d} x}(\tan x + y)\) \(\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x} (xy) + \frac{\mathrm{d} }{\mathrm{d} x}(y^{2})=\frac{\mathrm{d} }{\mathrm{d} x}(\tan x)+ \frac{\mathrm{d} y}{\mathrm{d} x} \) \(\Rightarrow y.\frac{\mathrm{d} }{\mathrm{d} x} (x)+x .\frac{\mathrm{d} y}{\mathrm{d} x} +2y. \frac{\mathrm{d} y}{\mathrm{d} x}=\sec ^{2}x+ \frac{\mathrm{d} y}{\mathrm{d} x} \) \(\Rightarrow y.1 + x.\frac{\mathrm{d} y}{\mathrm{d} x}+2y. \frac{\mathrm{d} y}{\mathrm{d} x}=\sec ^{2}x+ \frac{\mathrm{d} y}{\mathrm{d} x}\) \(\Rightarrow (x+2y-1)\frac{\mathrm{d} y}{\mathrm{d} x}=\sec ^{2}x-y\)

\(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\sec ^{2}x-y}{(x+2y-1 )}\).

Q5: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(x^{2}+xy+y^{2}=100\).

Sol:

The given relationship is \(x^{2}+xy+y^{2}=100\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(x^{2}+xy+y^{2})=\frac{\mathrm{d} }{\mathrm{d} x}(100)\)

\(\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x} (x^{2})+\frac{\mathrm{d} }{\mathrm{d} x} (xy) + \frac{\mathrm{d} }{\mathrm{d} x}(y^{2})=0 \) (derivatives of constant function is 0)

\(\Rightarrow 2x+ y.1+x.\frac{\mathrm{d} y}{\mathrm{d} x} +2y.\frac{\mathrm{d} y}{\mathrm{d} x}=0 \) \(\Rightarrow 2x+ y+(x+2y)\frac{\mathrm{d} y}{\mathrm{d} x} =0 \) \(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=-\frac{2x+y}{x+2y}\)

 

Q6: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(x^{3}+x^{2}y+xy^{2}+y^{3}\).

Sol:

The given relationship is \(x^{3}+x^{2}y+xy^{2}+y^{3}=81\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(x^{3}+x^{2}y+xy^{2}+y^{3})=\frac{\mathrm{d} }{\mathrm{d} x}(81)\)

\(\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x} (x^{3})+\frac{\mathrm{d} }{\mathrm{d} x} (x^{2}y) + \frac{\mathrm{d} }{\mathrm{d} x}(xy^{2})+\frac{\mathrm{d} }{\mathrm{d} x}(y^{3})=0 \) (derivatives of constant function is 0)

\(\Rightarrow 3x^{2}+ y.\frac{\mathrm{d} }{\mathrm{d} x}(x^{2})+x^{2}\frac{\mathrm{d} y}{\mathrm{d} x}+y^{2}\frac{\mathrm{d} }{\mathrm{d} x}(x)+x\frac{\mathrm{d} }{\mathrm{d} x}(y^{2}+3y^{2}.\frac{\mathrm{d} y}{\mathrm{d} x} =0 \) \(\Rightarrow 3x^{2}+ y.2x+x^{2}\frac{\mathrm{d} y}{\mathrm{d} x}+y^{2}.1+x.2y.\frac{\mathrm{d} y}{\mathrm{d} x}+3y^{2}\frac{\mathrm{d} y}{\mathrm{d} x} =0 \) \(\Rightarrow (x^{2}+2xy+3y^{2}\frac{\mathrm{d} y}{\mathrm{d} x}+(3x^{2}+2xy+y^{2}=0\) \(therefore,\; \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{-(3x^{2}+2xy+y^{2})}{x^{2}+2xy+3y^{2}}\)

 

Q7: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(\sin ^{2}y +\cos xy=\Pi\).

Sol:

The given relationship is \(\sin ^{2}y+\cos xy=\Pi\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(\sin ^{2}y+\cos xy)=\frac{\mathrm{d} }{\mathrm{d} x}(\Pi)\)

\(\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x} (\sin ^{2}y)+\frac{\mathrm{d} }{\mathrm{d} x} (\cos xy) =0 \) ……(i) (derivatives of constant function is 0)

Using chain rule,we get

\(\frac{\mathrm{d} }{\mathrm{d} x}(\sin ^{2}y=2 \sin y \frac{\mathrm{d} }{\mathrm{d} x}(\sin y) =2\sin y \cos y \frac{\mathrm{d} y}{\mathrm{d} x}\) …….(ii)

\(\frac{\mathrm{d} }{\mathrm{d} x}(\cos xy)=-\sin xy \frac{\mathrm{d} }{\mathrm{d} x}(xy)= -\sin xy (y. \frac{\mathrm{d} }{\mathrm{d} x}(x)+x. \frac{\mathrm{d} y}{\mathrm{d} x})= -\sin xy (y. 1+x. \frac{\mathrm{d} y}{\mathrm{d} x})= -y \sin xy -x\sin xy \frac{\mathrm{d} y}{\mathrm{d} x}\) …….(iii)

From (i), (ii) and (iii) we have

\( 2\sin y \cos y \frac{\mathrm{d} y}{\mathrm{d} x}- y\sin xy- x \sin xy \frac{\mathrm{d} y}{\mathrm{d} x}=0\) \(\Rightarrow (2\sin y \cos y- x \sin xy)\frac{\mathrm{d} y}{\mathrm{d} x}= y \sin xy\) \(\Rightarrow (\sin 2y-x\sin xy )\frac{\mathrm{d} y}{\mathrm{d} x}=y \sin xy\) \(therefore,\; \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{y \sin xy}{\sin 2y -x \sin xy}\)

 

Q8: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(\sin ^{2}x +\cos ^{y}=1\).

Sol:

The given relationship is \(\sin ^{2}x +\cos ^{y}=1\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(\sin ^{2}x+\cos ^{y})=\frac{\mathrm{d} }{\mathrm{d} x}(1)\)

\(\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x} (\sin ^{2}y)+\frac{\mathrm{d} }{\mathrm{d} x} (\cos ^{y}) =0 \) (derivatives of constant function is 0)

\(\Rightarrow 2\sin x \frac{\mathrm{d} }{\mathrm{d} x} (\sin x)+2\cos y.\frac{\mathrm{d} }{\mathrm{d} x} (\cos y) =0 \) \(\Rightarrow 2\sin x \cos x+2\cos y(-\sin y).\frac{\mathrm{d} y}{\mathrm{d} x} =0 \) \(\Rightarrow \sin 2x-\sin 2y.\frac{\mathrm{d} y}{\mathrm{d} x} =0 \) \(therefore,\; \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\sin 2x}{\sin 2y}\)

 

Q9: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(y=\sin ^{-1}\left ( \frac{2x}{1+x^{2}} \right )\).

Sol:

The given relationship is \(y=\sin ^{-1}\left ( \frac{2x}{1+x^{2}} \right )\)

\(\sin y=\left ( \frac{2x}{1+x^{2}} \right )\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(\sin y)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{2x}{1+x^{2}} \right )\)

\(\Rightarrow \cos y \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x} \left ( \frac{2x}{1+x^{2}} \right ) \) ………..(i)

The right side function \( \left ( \frac{2x}{1+x^{2}} \right ) \) is of the form \(\frac{u}{v}\)

So, by quotient rule, we obtain

\(\frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{2x}{1+x^{2}} \right )=\frac{(1+x^{2}).\frac{\mathrm{d} }{\mathrm{d} x}(2x)-2x.\frac{\mathrm{d} }{\mathrm{d} x}(1+x^{2})}{(1+x^{2})^{2}}\)

\(=\frac{(1+x^{2}).2-2x.(0+2x)}{(1+x^{2})^{2}}=\frac{2+2x^{2}-4x^{2}}{(1+x^{2})^{2}}=\frac{2(1-x^{2})}{(1+x^{2})^{2}}\) ………(ii)

Also \(\sin y=\frac{2x}{1+x^{2}}\)

\(\Rightarrow \cos y=\sqrt{1-\sin^{2}y}=\sqrt{1-\left ( \frac{2x}{1+x^{2}} \right )^{2}}=\sqrt{\frac{(1+x^{2})^{2}-4x^{2}}{(1+x^{2})^{2}}}\)

\(=\sqrt{\frac{(1-x^{2})^{2}}{(1+x^{2})^{2}}}=\frac{1-x^{2}}{1+x^{2}}\) ……….(iii)

From (i) , (ii) and (iii) we obtain

\(=\frac{1-x^{2}}{1+x^{2}}\times \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2(1-x^{2})}{(1+x^{2})^{2}}\) \(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2}{1+x^{2}}\)

 

Q10: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(y=\tan ^{-1}\left ( \frac{3x-x^{3}}{1-3x^{2}} \right ),-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}\).

Sol:

The given relationship is \(y=\tan ^{-1}\left ( \frac{3x-x^{3}}{1-3x^{2}} \right )\)

\(\tan y=\left ( \frac{3x-x^{3}}{1-3x^{2}} \right )\) ………(i)

Differentiating the equation with respect to x, we have

We know that, \(\tan y=\frac{3\tan \frac{y}{3}-\tan ^{3}\frac{y}{3}}{1-3\tan ^{2}\frac{y}{3}}\) …………(ii)

Comparing equation (i) and (ii), we have

\(x=\tan \frac{y}{3}\)

Differentiating this relationship w.r.t. x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(x)=\frac{\mathrm{d} }{\mathrm{d} x} \left ( \tan \frac{y}{3} \right )\) \(\Rightarrow 1=\sec ^{2}\frac{y}{3}.\frac{\mathrm{d} }{\mathrm{d} x} \left ( \frac{y}{3} \right )\) \(\Rightarrow 1=\sec ^{2}\frac{y}{3}.\frac{1}{3}\frac{\mathrm{d} y}{\mathrm{d} x} \) \(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{3}{\sec ^{2}\frac{y}{3}}=\frac{3}{1+\tan ^{2}\frac{y}{3}}\) \(therefore,\; \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{3}{1+x^{2}}\)

 

Q11: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(y=\cos ^{-1}\left ( \frac{1-x^{2}}{1+x^{2}} \right ), 0<x<1\).

Sol:

The given relationship is \(y=\cos ^{-1}\left ( \frac{1-x^{2}}{1+x^{2}} \right ), 0<x<1\)

\(\cos y= \left ( \frac{1-x^{2}}{1+x^{2}} \right )\) \(\frac{1-\tan ^{2}\frac{y}{2}}{1+\tan ^{2}\frac{y}{2}}=\frac{1-x^{2}}{1+x^{2}}\)

Comparing both sides equation

\(\tan \frac{y}{2}=x\)

Differentiating the equation with respect to x, we have

\(\sec ^{2} \frac{y}{2}\frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{y}{2} \right )=\frac{\mathrm{d} }{\mathrm{d} x}(x)\) \(\sec ^{2} \frac{y}{2}\times \frac{1}{2}.\frac{\mathrm{d} y}{\mathrm{d} x}=1\) \(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2}{\sec ^{2}\frac{y}{2}}\) \(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2}{1+\tan ^{2}\frac{y}{2}}\) \(therefore,\; \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2}{1+x ^{2}}\)

 

Q12: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(y=\sin ^{-1}\left ( \frac{1-x^{2}}{1+x^{2}} \right ), 0<x<1\).

Sol:

The given relationship is \(y=\sin ^{-1}\left ( \frac{1-x^{2}}{1+x^{2}} \right ), 0<x<1\)

\(\sin y= \left ( \frac{1-x^{2}}{1+x^{2}} \right )\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(\sin y)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{1-x^{2}}{1+x^{2}} \right )\) ……..(i)

Using chain rule

\(\frac{\mathrm{d} }{\mathrm{d} x}(\sin y)=\cos y \frac{\mathrm{d}y }{\mathrm{d} x}\) \(\cos y=\sqrt{1-\sin ^{2}y}=\sqrt{1-\left ( \frac{1-x^{2}}{1+x^{2}} \right )^{2}}\) \(=\sqrt{({1+x^{2}})^{2}-\left ( \frac{1-x^{2}}{1+x^{2}} \right )^{2}}\) \(=\sqrt{ \frac{({1+x^{2}})^{2}-(1-x^{2})}{(1+x^{2})^{2}} ^{2}}=\sqrt{\frac{4x^{2}}{(1+x^{2})^{2}}}=\frac{2x}{1+x^{2}}\)

\(therefore,\; \frac{\mathrm{d} }{\mathrm{d} x}(\sin y)=\frac{2x}{1+x^{2}}.\frac{\mathrm{d} y}{\mathrm{d} x}\) …..(ii)

\(\frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{1-x^{2}}{1+x^{2}} \right )=\frac{(1+x^{2}).(1-x^{2})-(1-x^{2}).(1+x^{2})}{(1+x^{2})^{2}}\) [using quotient rule]

\(=\frac{(1+x^{2}).(-2x)-(1-x^{2}).(2x)}{(1+x^{2})^{2}}\) \(=\frac{-2x-2x^{3}-2x+2x^{3}}{(1+x^{2})^{2}}\)

\(=\frac{-4x}{(1+x^{2})^{2}}\) ……..(iii)

From (i),(ii) and (iii) we have

\(\frac{2x}{(1+x^{2})}\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{-4x}{(1+x^{2})^{2}}\) \(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{-2}{(1+x^{2})}\)

 

Q13: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(y=\cos ^{-1}\left ( \frac{2x}{1+x^{2}} \right ), -1<x<1\).

Sol:

The given relationship is \(y=\cos ^{-1}\left ( \frac{2x}{1+x^{2}} \right )\)

\(\cos y= \left ( \frac{2x}{1+x^{2}} \right )\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(\cos y)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{2x}{1+x^{2}} \right )\) \(-\sin y \frac{\mathrm{d}y }{\mathrm{d} x}=\frac{(1+x^{2}.\frac{\mathrm{d} }{\mathrm{d} x}(2x)-2x.\frac{\mathrm{d} }{\mathrm{d} x}(1+x^{2})}{(1+x^{2})^{2}}\) \(\Rightarrow -\sqrt{1-\cos^{2}y}.\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{(1+x^{2}.2-2x.2x)}{(1+x^{2})^{2}}\) \(\Rightarrow \sqrt{1-\left ( \frac{2x}{1+x^{2}} \right )^{2}}.\frac{\mathrm{d} y}{\mathrm{d} x}=-\left [\frac{2(1-x^{2})}{(1+x^{2})^{2}} \right ]\) \(\Rightarrow \sqrt{\frac{(1+x^{2})^{2}-4x^{2}}{(1+x^{2})^{2}}}.\frac{\mathrm{d} y}{\mathrm{d} x}=-\left [\frac{2(1-x^{2})}{(1+x^{2})^{2}} \right ]\) \(\Rightarrow \sqrt{\frac{(1-x^{2})^{2}}{(1+x^{2})^{2}}}.\frac{\mathrm{d} y}{\mathrm{d} x}=-\left [\frac{2(1-x^{2})}{(1+x^{2})^{2}} \right ]\) \(\Rightarrow \frac{(1-x^{2})}{(1+x^{2})}.\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{-2(1-x^{2})}{(1+x^{2})^{2}}\) \(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{-2}{1+x^{2}}\)

 

Q14: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(y=\sin^{-1}(2x\sqrt{1-x^{2}}),-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}\).

Sol:

The given relationship is \(y=\sin^{-1}(2x\sqrt{1-x^{2}}),-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}\)

\(\sin y= (2x\sqrt{1-x^{2}})\)

Differentiating the equation with respect to x, we have

\(\cos y{\mathrm{d} y}{\mathrm{d} x}=2\left [ x.\frac{\mathrm{d} }{\mathrm{d} x}\sqrt{1-x^{2}} +\sqrt{1-x^{2}}\frac{\mathrm{d} x}{\mathrm{d} x}\right ]\) \(\sqrt{1-\sin^{2}y} \frac{\mathrm{d}y }{\mathrm{d} x}=2\left [ \frac{x}{2}.\frac{-2x}{\sqrt{1-x^{2}}} +\sqrt{1-x^{2}}\right ]\) \(\Rightarrow \sqrt{1-(2x\sqrt{1-x^{2}})^{2}}.\frac{\mathrm{d} y}{\mathrm{d} x}=2\left [ \frac{-x^{2}+1-x^{2}}{\sqrt{1-x^{2}}} \right ]\) \(\Rightarrow \sqrt{1-4x^{2}(1-x^{2})}.\frac{\mathrm{d} y}{\mathrm{d} x}=2\left [ \frac{1-2x^{2}}{\sqrt{1-x^{2}}} \right ]\) \(\Rightarrow \sqrt{(1-2x^{2})^{2}}.\frac{\mathrm{d} y}{\mathrm{d} x}=2\left [ \frac{1-2x^{2}}{\sqrt{1-x^{2}}} \right ]\) \(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2}{\sqrt{1-x^{2}}}\)

 

Q15: Find \(\frac{\mathrm{d} y}{\mathrm{d} x}\)

\(y=\sec^{-1}\left ( \frac{1}{2x^{2}-1} \right ),0<x<\frac{1}{\sqrt{2}}\).

Sol:

The given relationship is \(y=\sec^{-1}\left ( \frac{1}{2x^{2}-1} \right ),0<x<\frac{1}{\sqrt{2}}\)

\(\sec y= \left ( \frac{1}{2x^{2}-1} \right )\) \(\Rightarrow \cos y=2x^{2}-1\) \(\Rightarrow 2x^{2}=1+\cos y\) \(\Rightarrow 2x^{2}=2\cos {2}\frac{y}{2}\) \(\Rightarrow x=cos \frac{y}{2}\)

Differentiating the equation with respect to x, we have

\(\frac{\mathrm{d} }{\mathrm{d} x}(x)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( \cos \frac{y}{2} \right )\) \(\Rightarrow 1=-\sin \frac{y}{2}.\frac{\mathrm{d} }{\mathrm{d} x}\left ( \frac{y}{2} \right )\) \(\Rightarrow \frac{-1}{\sin \frac{y}{2}}=\frac{1}{2}\frac{\mathrm{d} y}{\mathrm{d} x}\) \(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{-2}{\sin \frac{y}{2}}=\frac{-2}{\sqrt{1-\cos^{2}\frac{y}{2}}}\) \(\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{-2}{\sqrt{1-x^{2}}}\)

 

Related Links
Ncert Grade 9 Science Solutions Ncert Solution Of Physics Class 10
Ncert Chemistry Class 12 Solutions Free Download Pdf 8Th Class Ncert Solution
Ncert Class 9Th 10Th Ncert
Ncert Solutions Class 11 Download Ncert Solutions For Class 12
8 Std Ncert Maths Solutions Class 9Th Maths Ncert Solutions
Ncert Mathematics Class 11 10Th Class Ncert Solution Maths