NCERT Solutions for Class 7 Maths Exercise 6.3 Chapter 6 The Triangle and its Properties are available here in simple PDF. Angle sum property of a triangle is the only topic covered in this exercise of NCERT Solutions for Class 7 Maths Chapter 6. It is an essential material as it offers a wide range of questions that test the students’ understanding of concepts. Students who aspire to score good marks in Maths refer to the NCERT Solutions for Class 7 Maths Chapter 6 The Triangle and its Properties.
NCERT Solutions for Class 7 Maths Chapter 6 The Triangle and its Properties – Exercise 6.3
Access other exercises of NCERT Solutions for Class 7 Chapter 6 – The Triangle and its Properties
Access answers to Maths NCERT Solutions for Class 7 Chapter 6 – The Triangle and its Properties Exercise 6.3
1. Find the value of the unknown x in the following diagrams:
(i)
Solution:-
We know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= ∠BAC + ∠ABC + ∠BCA = 180o
= x + 50o + 60o = 180o
= x + 110o = 180o
By transposing 110o from LHS to RHS it becomes – 110o
= x = 180o – 110o
= x = 70o
(ii)
Solution:-
We know that,
The sum of all the interior angles of a triangle is 180o.
The given triangle is a right angled triangle. So the ∠QPR is 90o.
Then,
= ∠QPR + ∠PQR + ∠PRQ = 180o
= 90o + 30o + x = 180o
= 120o + x = 180o
By transposing 110o from LHS to RHS it becomes – 110o
= x = 180o – 120o
= x = 60o
(iii)
Solution:-
We know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= ∠XYZ + ∠YXZ + ∠XZY = 180o
= 110o + 30o + x = 180o
= 140o + x = 180o
By transposing 140o from LHS to RHS it becomes – 140o
= x = 180o – 140o
= x = 40o
(iv)
Solution:-
We know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= 50o + x + x = 180o
= 50o + 2x = 180o
By transposing 50o from LHS to RHS it becomes – 50o
= 2x = 180o – 50o
= 2x = 130o
= x = 130o/2
= x = 65o
(v)
Solution:-
We know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= x + x + x = 180o
= 3x = 180o
= x = 180o/3
= x = 60o
∴The given triangle is an equiangular triangle.
(vi)
Solution:-
We know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= 90o + 2x + x = 180o
= 90o + 3x = 180o
By transposing 90o from LHS to RHS it becomes – 90o
= 3x = 180o – 90o
= 3x = 90o
= x = 90o/3
= x = 30o
Then,
= 2x = 2 × 30o = 60o
2. Find the values of the unknowns x and y in the following diagrams:
(i)
Solution:-
We Know That,
An exterior angle of a triangle is equal to the sum of its interior opposite angles.
Then,
= 50o + x = 120o
By transposing 50o from LHS to RHS it becomes – 50o
= x = 120o – 50o
= x = 70oÂ
We also know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= 50o + x + y = 180o
= 50o + 70o + y = 180o
= 120o + y = 180o
By transposing 120o from LHS to RHS it becomes – 120o
= y = 180o – 120oÂ
= y = 60o
(ii)
Solution:-
From the rule of vertically opposite angles,
= y = 80o
Then,
We know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= 50o + 80o + x = 180o
= 130o + x = 180o
By transposing 130o from LHS to RHS it becomes – 130o
= x = 180o – 130oÂ
= x = 50o
(iii)
Solution:-
We know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= 50o + 60o + y = 180o
= 110o + y = 180o
By transposing 110o from LHS to RHS it becomes – 110o
= y = 180o – 110oÂ
= y = 70o
Now,
From the rule of linear pair,
= x + y = 180o
= x + 70o = 180o
By transposing 70o from LHS to RHS it becomes – 70o
= x = 180o – 70
= x = 110o
(iv)
Solution:-
From the rule of vertically opposite angles,
= x = 60o
Then,
We know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= 30o + x + y = 180o
= 30o + 60o + y = 180o
= 90o + y = 180o
By transposing 90o from LHS to RHS it becomes – 90o
= y = 180o – 90oÂ
= y = 90o
(v)
Solution:-
From the rule of vertically opposite angles,
= y = 90o
Then,
We know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= x + x + y = 180o
= 2x + 90o = 180o
By transposing 90o from LHS to RHS it becomes – 90o
= 2x = 180o – 90oÂ
= 2x = 90o
= x = 90o/2
= x = 45o
(vi)
Solution:-
From the rule of vertically opposite angles,
= x = y
Then,
We know that,
The sum of all the interior angles of a triangle is 180o.
Then,
= x + x + x = 180o
= 3x = 180o
= x = 180o/3
= x = 60o
Also, explore –Â
NCERT Solutions for Class 7 Maths
thank you so much for the awesome answer very nice explanation
thank you so much for the awesome answer very nice explanation. I really find it very very useful .