NCERT Solutions for class 8 Maths Chapter 1- Rational Numbers Exercise 1.2

NCERT Solutions for class 8 Maths Chapter 1 Rational Numbers Exercise 1.2 are available here. These solutions are available in the downloadable PDF format as well. The NCERT Solutions for exercise 1.2 of Class 8 are prepared by the subject experts at BYJU’S in such a way that going through these solutions will help students in getting rid of all the doubts from those particular topics that are covered in the exercise. The NCERT textbook provides plenty of questions for the students to solve and practice. Solving the NCERT Solutions for Class 8 Maths and practicing is more than enough to score high in the class 8 examinations. But the students should make sure that they practise every problem given in the textbook repeatedly till the concept gets clear.

Download PDF of NCERT Solutions for class 8 Maths Chapter 1- Rational Numbers Exercise 1.2

ncert solutions for class 8 maths chapter 1 ex 2 1
ncert solutions for class 8 maths chapter 1 ex 2 2
ncert solutions for class 8 maths chapter 1 ex 2 3

Access other exercise solutions of class 8 Maths Chapter 1- Rational Numbers

Exercise 1.1 Solutions 11 Questions (11 Short Answer Questions)

Access Answers of Maths NCERT class 8 Chapter 1- Rational Numbers Exercise 1.2 Page Number 20

1. Represent these numbers on the number line.

(i) 7/4

(ii) -5/6

Solution:

(i) 7/4

Divide the line between the whole numbers into 4 parts. i.e., divide the line between 0 and 1 to 4 parts, 1 and 2 to 4 parts and so on.

Thus, the rational number 7/4 lies at a distance of 7 points away from 0 towards positive number line.

NCERT Solution For Class 8 Maths Chapter 1 Image 7

(ii) -5/6

Divide the line between the integers into 4 parts. i.e., divide the line between 0 and -1 to 6 parts, -1 and -2 to 6 parts and so on. Here since the numerator is less than denominator, dividing 0 to – 1 into 6 part is sufficient.

Thus, the rational number -5/6 lies at a distance of 5 points, away from 0, towards negative number line

NCERT Solution For Class 8 Maths Chapter 1 Image 8

2. Represent -2/11, -5/11, -9/11 on a number line.

Solution:

Divide the line between the integers into 11 parts.

Thus, the rational numbers -2/11, -5/11, -9/11 lies at a distance of 2, 5, 9 points away from 0, towards negative number line respectively.

NCERT Solution For Class 8 Maths Chapter 1 Image 9

3. Write five rational numbers which are smaller than 2.

Solution:

The number 2 can be written as 20/10

Hence, we can say that, the five rational numbers which are smaller than 2 are:

2/10, 5/10, 10/10, 15/10, 19/10

4. Find the rational numbers between -2/5 and ½.

Solution:

Let us make the denominators same, say 50.

-2/5 = (-2 × 10)/(5 × 10) = -20/50

½ = (1 × 25)/(2 × 25) = 25/50

Ten rational numbers between -2/5 and ½ = ten rational numbers between -20/50 and 25/50

Therefore, ten rational numbers between -20/50 and 25/50 = -18/50, -15/50, -5/50, -2/50, 4/50, 5/50, 8/50, 12/50, 15/50, 20/50

5. Find five rational numbers between.

(i) 2/3 and 4/5

(ii) -3/2 and 5/3

(iii) ¼ and ½

Solution:

(i) 2/3 and 4/5

Let us make the denominators same, say 60

i.e., 2/3 and 4/5 can be written as:

2/3 = (2 × 20)/(3 × 20) = 40/60

4/5 = (4 × 12)/(5 × 12) = 48/60

Five rational numbers between 2/3 and 4/5 = five rational numbers between 40/60 and 48/60

Therefore, Five rational numbers between 40/60 and 48/60 = 41/60, 42/60, 43/60, 44/60, 45/60

(ii) -3/2 and 5/3

Let us make the denominators same, say 6

i.e., -3/2 and 5/3 can be written as:

-3/2 = (-3 × 3)/(2× 3) = -9/6

5/3 = (5 × 2)/(3 × 2) = 10/6

Five rational numbers between -3/2 and 5/3 = five rational numbers between -9/6 and 10/6

Therefore, Five rational numbers between -9/6 and 10/6 = -1/6, 2/6, 3/6, 4/6, 5/6

(iii) ¼ and ½

Let us make the denominators same, say 24.

i.e., ¼ and ½ can be written as:

¼ = (1 × 6)/(4 × 6) = 6/24

½ = (1 × 12)/(2 × 12) = 12/24

Five rational numbers between ¼ and ½ = five rational numbers between 6/24 and 12/24

Therefore, Five rational numbers between 6/24 and 12/24 = 7/24, 8/24, 9/24, 10/24, 11/24

6. Write five rational numbers greater than -2.

Solution:

-2 can be written as – 20/10

Hence, we can say that, the five rational numbers greater than -2 are

-10/10, -5/10, -1/10, 5/10, 7/10

7. Find ten rational numbers between 3/5 and ¾,

Solution:

Let us make the denominators same, say 80.

3/5 = (3 × 16)/(5× 16) = 48/80

3/4 = (3 × 20)/(4 × 20) = 60/80

Ten rational numbers between 3/5 and ¾ = ten rational numbers between 48/80 and 60/80

Therefore, ten rational numbers between 48/80 and 60/80 = 49/80, 50/80, 51/80, 52/80, 54/80, 55/80, 56/80, 57/80, 58/80, 59/80


NCERT Solutions for Class 8 Maths Chapter 1- Rational Numbers Exercise 1.2

Exercise 1.2 of NCERT class 8 Maths Chapter 1, Rational Numbers, deals with a few advanced concepts related to rational numbers. We can say that exercise mainly deals with the following:

  • Representation of rational numbers on a number line.
  • Rational Numbers between two rational numbers.

The chapter explains that there are countless rational numbers present between two given numbers, The concept of “mean” helps in finding the rational numbers between two rational numbers. Students should practice the NCERT Solutions without fail to understand how a problem from a particular concept could be solved. This helps in improving the time management skills and also boosts the confidence level in the students.

Leave a Comment

Your Mobile number and Email id will not be published. Required fields are marked *

*

*

BOOK

Free Class