 Checkout JEE MAINS 2022 Question Paper Analysis : Checkout JEE MAINS 2022 Question Paper Analysis :

# Central Force

Central force is the force that is radially pointing and the magnitude is dependent on the distance from the source. Examples of central forces are gravitational force, electrostatic forces, and spring force. In this article, let us learn in detail about the central force, its equation, examples and fields.

## What is Central Force?

The central force in classical mechanics is defined as the force that is acting on an object which is directed along the line joining the object and the origin. The magnitude of the central force depends only on the distance of the object and the center.

Following are the theorems that relate central force with angular momentum:

Theorem 1: For an object to have its angular momentum conserved, the object should be subjected only to the central force.

Theorem 2: For an object to have its motion on a plane, the object should be subjected only to the central force.

## Central Force Equation

 $$\begin{array}{l}F=F(r)\hat{r}\end{array}$$

Where,

• F: conservative central force
• r: vector magnitude
$$\begin{array}{l}\left | r \right |\end{array}$$
is the distance to the center of force
• $$\begin{array}{l}\hat{r}=\frac{r}{r}\end{array}$$

Central force is a conservative force which is expressed as follows:

 $$\begin{array}{l}F(r)=-\frac{dU}{dr}\end{array}$$

Where,

• F(r) is the magnitude of a central force
• U(r) is the time-independent potential energy

For a particle under central force to be in a uniform circular motion should have centripetal force as follows:

 $$\begin{array}{l}\frac{mv^{2}}{r}=F(r)\end{array}$$

Where,

• r is the initial radius
• v is the speed that satisfies the equation of centripetal force

### Central Force Fields

Derivation of fields with the help of Lagrangian is as follows:

$$\begin{array}{l}F=F(r)\hat{r}\end{array}$$
$$\begin{array}{l}L=\frac{1}{2}m\dot{r}^{2}-V(r)\end{array}$$
(Lagrangian of an object with mass m)

$$\begin{array}{l}=\frac{1}{2}m(\dot{r}^{2}+r^{2}\Theta ^{2})-V(r)\end{array}$$
$$\begin{array}{l}\frac{\partial L}{\partial \Theta}=0\end{array}$$
(Lagrangian has no Ө dependence)

$$\begin{array}{l}\frac{d}{dt}(\frac{\partial L}{\partial \dot{\Theta}})=0\end{array}$$
$$\begin{array}{l}\dot{l}\equiv \dot{p}_{\Theta} =\frac{d}{dt}(mr^{2}\dot{\Theta})=0\end{array}$$
$$\begin{array}{l}\frac{d}{dt}(\frac{\partial L}{\partial \dot{r}})-\frac{\partial L}{\partial r}=0\end{array}$$
$$\begin{array}{l}\frac{d}{dt}(m\dot{r})-mr\dot{\Theta}^{2}+\frac{\partial V(r)}{\partial r}=0\end{array}$$
$$\begin{array}{l}V_{eff}(r)=V(r)+\frac{1}{2}\frac{l^{2}}{mr^{2}}\end{array}$$

### Central Force Examples

Two familiar examples for central force are the gravitational force and Coulomb force with F(r) being proportional to 1/r2. For an object with such a force where F(r) is negative obeys Kepler’s laws of planetary motion. Using Bertrand’s theorem,

$$\begin{array}{l}F(r)=-\frac{k}{r^{2}}\end{array}$$
and
$$\begin{array}{l}F(r)=-kr\end{array}$$
are the possible central force fields where bounded orbits are stable closed orbits.

## Frequently Asked Questions – FAQs

### What is the central force?

Central force is defined as the force acting on an object which is directed along the line joining the object and the origin.

### Give some examples of central forces.

Examples of central forces are:
• Gravitational Force
• Spring Force
• Electrostatic Force

### Give the equation for the central force?

The equation for the central force is given as:
$$\begin{array}{l}F=F(r)\hat{r}\end{array}$$

### On what factor the magnitude of the central force depends?

The magnitude of the central force depends only on the distance of the object and the center.

### State true or false: Natural satellites move around the earth due to central force.

True.
Test your knowledge on Central force