Archives

Let [latex]A=\begin{bmatrix} a_{1}\\ a_{2} \end{bmatrix}[/latex] and [latex]B=\begin{bmatrix} b_{1}\\ b_{2} \end{bmatrix}[/latex] be two 2 × 1 matrices with real entries such that A = XB, where X =[latex]\frac{1}{\sqrt3}\begin{bmatrix} 1 &-1 \\ 1&k \end{bmatrix}[/latex], and k ∈ R. If (a12 + a22) = (2 / 3) (b12 + b22) and (k2 + 1) b22 ≠ – 2b1b2, then the value of k is

Answer: (1) XB = A (1 / √3) b1 - b2 = √3a1 3a12 = b12 + b22 - 2b1b2 b1 + kb2 = √3a2 3a22 = b12 + k2b22 + 2kb1b2 Adding both... View Article