Introduction To Trigonometry Class 10 Notes

CBSE Class 10 Maths Trigonometry Notes:-Download PDF Here

The notes for trigonometry class 10 Maths is provided here. Get the complete concept on trigonometry which is covered in Class 10 Maths. Also, get the various trigonometric ratios for specific angles, the relationship between trigonometric functions, trigonometry tables, various identities given here.

Trigonometric Ratios

Opposite & Adjacent Sides in a Right Angled Triangle

In the ΔABC right-angled at B, BC is the side opposite to A, AC is the hypotenuse and AB is the side adjacent to A.

Right Angle Triangle

Trigonometric Ratios

For the right ΔABC, right-angled at B, the trigonometric ratios of the A are as follows:

  • sin A=opposite side/hypotenuse=BC/AC
  • cos A=adjacent side/hypotenuse=AB/AC
  • tan A=opposite side/adjacent side=BC/AB
  • cosec A=hypotenuse/opposite side=AC/BC
  • sec A=hypotenuse/adjacent side=AC/AB
  • cot A=adjacent side/opposite side=AB/BC

To know more about Trigonometric Ratios, visit here.

Visualization of Trigonometric Ratios Using a Unit Circle

Draw a circle of the unit radius with the origin as the centre. Consider a line segment OP joining a point P on the circle to the centre which makes an angle θ with the x-axis. Draw a perpendicular from P to the x-axis to cut it at Q.

  • sinθ=PQ/OP=PQ/1=PQ
  • cosθ=OQ/OP=OQ/1=OQ
  • tanθ=PQ/OQ=sinθ/cosθ
  • cosecθ=OP/PQ=1/PQ
  • secθ=OP/OQ=1/OQ
  • cotθ=OQ/PQ=cosθ/sinθ

Unit circle

Visualisation of Trigonometric Ratios Using a Unit Circle

Relation between Trigonometric Ratios

  • cosec θ =1/sin θ
  • sec θ = 1/cos θ
  • tan θ = sin θ/cos θ
  • cot θ = cos θ/sin θ=1/tan θ

Trigonometric Ratios of Specific Angles

Range of Trigonometric Ratios from 0 to 90 degrees

For 0θ90,

  • 0≤sinθ≤1
  • 0≤cosθ≤1
  • 0≤tanθ<∞
  • 1≤secθ<∞
  • 0≤cotθ<∞
  • 1≤cosecθ<∞

tanθ and secθ are not defined at  90.
cotθ and cosecθ are not defined at 0.

Variation of trigonometric ratios from 0 to 90 degrees

As θ increases from 0 to 90

  • siθ increases from 0 to 1
  • coθ decreases from 1 to 0
  • taθ increases from 0 to
  • coseθ decreases from to 1
  • seθ increases from 1 to
  • coθ decreases from to 0

Standard values of Trigonometric ratios

∠A 0o 30o 45o 60o 90o
sin A 0  1/2  1/√2  √3/2  1
cos A 1  √3/2 1/√2  1/2 0
tan A 0  1/√3  1 √3  not defined
cosec A not defined  2  √2  2/√3  1
sec A 1 2/√3 √2  2  not defined
cot A not defined  √3  1 1/√3 0

To know more about Trigonometric Ratios of Standard Angles, visit here.

Trigonometric Ratios of Complementary Angles

Complementary Trigonometric ratios

If θ is an acute angle, its complementary angle is 90θ. The following relations hold true for trigonometric ratios of complementary angles.

  • si(90− θcoθ
  • co(90− θsiθ
  • ta(90− θcoθ
  • co(90− θtaθ
  • cose(90− θseθ
  • se(90− θcoseθ

To know more about Trigonometric Ratios of Complementary Angles, visit here.

Trigonometric Identities

  • sin2θ+cos2θ=1
  • 1+cot2θ=coesc2θ
  • 1+tan2θ=sec2θ

To know more about Trigonometric Identities, visit here.

7 Comments

  1. Very nice notes .It’s really help me

  2. Can u answer my questions of this chapter!?

    1. What’s the question

  3. found these points becoming most helpful to solve my confusion
    very helpful notes
    thank you byju’s

  4. SolangeloIsGOALSFIGHTME

    Thank you!! This helped!

Leave a Comment

Your email address will not be published. Required fields are marked *

BOOK

Free Class