 # NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid's Geometry Exercise 5.2

Euclidian Geometry is easy to comprehend if students refer NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid’s Geometry Exercise 5.2 and 5.1. These exercises are specifically designed to aid your conceptual understanding. Furthermore, problems, both numerical and theoretical have been solved in a way that is easy to understand. Euclidian Geometry is an important concept that is taught at the elementary level. However, it has implications in various industries and research fields. Hence, a good grasp of this concept is important. Moreover, students will discover that this NCERT solution is the very best in terms of factual information. This is the result of solutions being designed by a team of knowledgeable teachers with years of experience. Another reason why NCERT Solutions is one of the best guides to use is that topics are conveyed in a simple and easy-to-understand format. Furthermore, jargons are broken down wherever possible in the content. Moreover, content is refreshed regularly as per the latest CBSE syllabus.

### Access Answers to NCERT Class 9 Chapter 5 – Introduction to Euclid’s Geometry Exercise 5.2 ### Access Other Exercise Solutions of Class 9 Maths Chapter 5 – Introduction to Euclid’s Geometry Exercise 5.2

Exercise 5.1 Solutions – 2 Questions

## NCERT Solutions for Class 9 Maths Chapter 5 – Introduction to Euclid’s Geometry Exercise 5.2

1. How would you rewrite Euclid’s fifth postulate so that it would be easier to understand?

Solution:

Euclid’s fifth postulate: If a straight line falling on two straight lines makes the interior angles on the same side of it taken together less than two right angles, then the two straight lines, if produced indefinitely, meet on that side on which the sum of angles is less than two right angles.

i.e., the Euclid’s fifth postulate is about parallel lines.

Parallel lines are the lines which do not intersect each other ever and are always at a constant perpendicular distance apart from each other. Parallel lines can be two or more lines.

A: If X does not lie on the line A then we can draw a line through X which will be parallel to that of the line A.

B: There can be only one line that can be drawn through the point X which is parallel to the line A.

2. Does Euclid’s fifth postulate imply the existence of parallel lines? Explain.

Solution:

Yes, Euclid’s fifth postulate does imply the existence of the parallel lines.

If the sum of the interior angles is equal to the sum of the right angles, then the two lines will not meet each other at any given point, hence making them parallel to each other. ∠1+∠3 = 180o

Or  ∠3+∠4 = 180o

Around 300 BC, an Alexandrian-Greek Mathematician named Euclid introduced this system. And aeons later, Euclid’s contributions still remain valid to this day. It has also been adopted in various fields of study. Hence, Euclidian Geometry has academic significance in various disciplines of mathematics as well as science. Discover the 2000-year-old theorems and their modern applications. Explore other important NCERT Solutions For Class 9 Maths to understand more mathematical concepts.

### Key Features of NCERT Solutions for Class 9 Maths Chapter 5 – Introduction to Euclid’s Geometry Exercise 5.2

1. Well-presented structure and format
2. Key points and important highlights and are provided
3. Effective explanation of jargons
4. Accurate and error-free content created by a team of experienced teachers
5. Detailed analysis of hard questions

Explore: NCERT Solutions Class 9