Ncert Solutions For Class 12 Maths Ex 7.1

Ncert Solutions For Class 12 Maths Chapter 7 Ex 7.1

Question 1:

By the method of inspection obtain an integral (or anti – derivative) of the sin 3x.

Answer:

As the derivative is sin 3x and x is the function of the anti – derivative of sin 3x.

\(\frac{d}{dx} (cos\; 3x) = – 3 sin\; 3x \\ sin\; 3x = – \frac{1}{3} \frac{d}{dx} (cos\; 3x) \\ sin\; 3x = \frac{d}{dx} (- \frac{1}{3} cos\; 3x) \\ Hence,\; the\; anti – derivative\; of\; sin\; 3x \;is\; (- \frac{1}{3} cos\; 3x)\)

Question 2:

By the method of inspection obtain an integral (or anti – derivative) of the cos 2x.

Answer:

As the derivative is cos 2x and x is the function of the anti – derivative of cos 2x

\(\frac{d}{dx} (sin\; 2x) = – 2 cos\; 2x \\ cos\; 2x = \frac{1}{2} \frac{d}{dx} (sin\; 2x) \\ cos\; 2x = \frac{d}{dx} (\frac{1}{2} (sin\; 2x)) \\ Hence,\; the\; anti – derivative\; of\; sin\; 2x \;is\; (- \frac{1}{2} cos\; 2x)\)

 

 

Question 3:

By the method of inspection obtain an integral (or anti – derivative) of the e5x.

Answer:

As the derivative is e5x and x is the function of the anti – derivative of e5x

\(\frac{d}{dx} (e ^{5x}) = 5 e ^{5x} \\ e ^{5x} = \frac{1}{5} \frac{d}{dx} (e^{5x}) \\ e ^{5x} = \frac{d}{dx} (\frac{1}{5} e^{5x}) \\ Hence,\; the\; anti – derivative\; of\; e ^{5x} is \frac{1}{5} e^{5x}\)

Question 4:

By the method of inspection obtain an integral (or anti – derivative) of the (mx + n) 2.

Answer:

As the derivative is (mx + n) 2 and x is the function of the anti – derivative of (mx + n) 2

\(\frac{d}{dx} (mx + n)^{3} = 3m (mx + n) ^{2}\\ (mx + n) ^{2} = \frac{1}{3m} \frac{d}{dx} (mx + n) ^{3} \\ (mx + n) ^{2} = \frac{d}{dx} (\frac{1}{3m} (mx + n) ^{3}) \\ Hence,\; the\; anti – derivative\; of\; (mx + n) ^{2} is \frac{1}{3m} (mx + n) ^{3}\)

Question 5:

By the method of inspection obtain an integral (or anti – derivative) of the sin 3x – 5 e 2x

Answer:

As the derivative is (sin 3x – 5 e 2x) and x is the function of the anti – derivative of (sin 3x – 5 e 2x)

\(\frac{d}{dx} (- \frac{1}{3} cos\; 3x – \frac{5}{2} e^{2x}) = sin 3x – 5 e^{2x} \\ Hence,\; the\; anti – derivative\; of\; sin\; 3x – 5 e^{2x} \;is\; (- \frac{1}{3} cos\; 3x – \frac{5}{2} e^{2x})\)

Question 6:

By the method of inspection obtain an integral of the \(\int (4 e^{2u} + 1) du\)

Answer:

Integral of \((4 e^{2u} + 1)\) and u is the function of the integral \((4 e^{2u} + 1)\).

\(\int (4 e^{2u} + 1) du \\ 4 \int e^{2u} du + \int 1 du \\ 4 (\frac{e^{2u}}{2}) + u + c \\ 2 e^{2u} + u + c \\ Where\; c\; is\; the\; constant.\)

Question 7:

By the method of inspection obtain an integral of the \(\int u^{2} (1 – \frac{1}{u^{2}}) du\)

Answer:

Integral of \(u^{2} (1 – \frac{1}{u^{2}})\) and u is the function of the integral \(u^{2} (1 – \frac{1}{u^{2}})\)

\(\int u^{2} (1 – \frac{1}{u^{2}}) du \\ \int (u^{2} – 1) du \\ \frac{u^{3}}{3} – u + c \\ Where\; c\; is\; the\; constant\)

Question 8:

By the method of inspection obtain an integral of the \(\int (a u^{2} + b u + c) du\)

Answer:

Integral of \(a u^{2} + b u + c\) and u is the function of the integral \(a u^{2} + b u + c\)

\(\int (a u^{2} + b u + c) du \\ a \int (u^{2}) du + b \int u du + c \int 1 du \\ a (\frac{u^{3}}{3}) + b (\frac{u^{2}}{2}) + cu + C \\ \\ Where\; C\; is\; the\; constant\)

Question 9:

By the method of inspection obtain an integral of the \(\int (a u^{2} + e^{u}) du\)

Answer:

Integral of \(a u^{2} + e^{u}\) and u is the function of the integral \(a u^{2} + e^{u}\)

\(\int (a u^{2} + e^{u}) du \\ a \int (u^{2}) du + \int e^{u} du \\ a (\frac{u^{3}}{3}) + e^{u} + C \\ \\ Where\; C\; is\; the\; constant\)

Question 10:

By the method of inspection obtain an integral of the \(\int (\sqrt{u} + \frac{1}{\sqrt{u}}) ^{2} du\)

Answer:

Integral of \((\sqrt{u} + \frac{1}{\sqrt{u}}) ^{2}\) and u is the function of the integral \((\sqrt{u} + \frac{1}{\sqrt{u}}) ^{2}\)

\((\sqrt{u} + \frac{1}{\sqrt{u}}) ^{2} \\ \int (u + \frac{1}{u} – 2) du \\ \int u du + \int \frac{1}{u} du – 2 \int 1 du \\ \frac{u^{2}}{2} + log \left | u \right | – 2 u + C \\ Where\; C\; is\; the\; constant\)

Question 11:

By the method of inspection obtain an integral of the \(\int \frac{u^{3} + 4 u^{2} + 4}{u ^{2}} du\)

Answer:

Integral of and u is the function of the integral \(\frac{u^{3} + 4 u^{2} + 4}{u ^{2}}\)

\(\int \frac{u^{3} + 4 u^{2} + 4}{u ^{2}} du \\ \int u du + 4 \int 1 du + \int \frac{4}{u^{2}} du \\ \frac{u ^{2}}{2} + 4 u + \frac{4}{x} + C \\ Where\; C\; is\; the\; constant\)

Question 12:

By the method of inspection obtain an integral of the \(\frac{u^{3} + 4 u + 4}{\sqrt{u}}\)

Answer:

Integral of \(\frac{u^{3} + 4 u + 4}{\sqrt{u}}\) and u is the function of the integral \(\frac{u^{3} + 4 u + 4}{\sqrt{u}}\)

\(\int \frac{u^{3} + 4 u + 4}{\sqrt{u}} du \\ \int (u ^{\frac{5}{2}} + 4 u ^{\frac{1}{2}} + 4 u^{- \frac{1}{2}}) \\ = \frac{u ^{\frac{7}{2}}}{\frac{7}{2}} + \frac{4 (u ^{\frac{3}{2}})}{\frac{3}{2}} + \frac{4 (u ^{\frac{1}{2}})}{\frac{1}{2}} + C \\ = \frac{2}{7} (u ^{\frac{7}{2}}) + \frac{8}{3} (u ^{\frac{3}{2}}) + 8 u ^{\frac{1}{2}} + C \\ = \frac{2}{7} (u ^{\frac{7}{2}}) + \frac{8}{3} (u ^{\frac{3}{2}}) + 8 \sqrt{u} + C \\ Where\; C\; is\; the\; constant\)

Question 13:

By the method of inspection obtain an integral of the \(\frac{u^{3} – u^{2} + u + 1}{u – 1}\)

Answer:

Integral of \(\frac{u^{3} – u^{2} + u + 1}{u – 1}\) and u is the function of the integral \(\frac{u^{3} – u^{2} + u + 1}{u – 1}\)

\(\int \frac{u^{3} – u^{2} + u + 1}{u – 1} du \\ On\; divinding,\; we\; get\; \\ \int (u^{2} + 1) du \\ \int u^{2} du + \int 1 du \\ \frac{u^{3}}{3} + u + C Where\; C\; is\; the\; constant\)

Question 14:

By the method of inspection obtain an integral of the \((1 – u) \sqrt{u}\)

Answer:

Integral of \((1 – u) \sqrt{u}\) and u is the function of the integral \((1 – u) \sqrt{u}\)

\(\int (1 + u) \sqrt{u}\; du \\ \int (\sqrt{u} + u^{\frac{3}{2}}) du \\ \int u^{\frac{1}{2}} du + \int u^{\frac{3}{2}} du \\ \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + \frac{u^{\frac{5}{2}}}{\frac{5}{2}} + C \\ \frac{2}{3} u^{\frac{3}{2}} + \frac{2}{5} u^{\frac{5}{2}} + C \\ Where\; C\; is\; the\; constant\)

Question 15:

By the method of inspection obtain an integral of the \(\sqrt{u} (3u^{2} + 2u + 5)\)

Answer:

Integral of \(\sqrt{u} (3u^{2} + 2u + 5)\) and u is the function of the integral \(\sqrt{u} (3u^{2} + 2u + 5)\)

\(\int \sqrt{u} (3u^{2} + 2u + 5) du \\ \int (3u ^{\frac{5}{2}} + 2u ^{\frac{3}{2}} + 5u ^{\frac{1}{2}}) du \\ 3 \int u ^{\frac{5}{2}} du + 2 \int u ^{\frac{3}{2}} du + 5 \int u ^{\frac{1}{2}} du \\ 3 (\frac{u ^{\frac{7}{2}}}{\frac{7}{2}}) + 2 (\frac{u ^{\frac{5}{2}}}{\frac{5}{2}}) + 5 (\frac{u ^{\frac{3}{2}}}{\frac{3}{2}}) + C \\ \frac{6}{7} u ^{\frac{7}{2}} + \frac{4}{5} u ^{\frac{5}{2}} + \frac{10}{3} u ^{\frac{3}{2}} + C \\ Where\; C\; is\; the\; constant\)

Question 16:

By the method of inspection obtain an integral of the \(2 u – 2 cos\; u + e ^{u}\)

Answer:

Integral of \(2 u – 2 cos\; u + e ^{u}\) and u is the function of the integral \(2 u – 2 cos\; u + e ^{u}\)

\(\int (2 u – 2 cos\; u + e ^{u}) du \\ 2 \int u du – 2 \int cos\; u du + \int e ^{u} du \\ 2 \frac{u ^{2}}{2} – 2 (sin u) + e ^{u} + C \\ u ^{2} – 2 sin\; u + e ^{u} + C Where\; C\; is\; the\; constant\)

Question 17:

By the method of inspection obtain an integral of the \((4 v^{2} + 2 sin v + 6 \sqrt{v})\)

Answer:

Integral of \((4 v^{2} + 2 sin v + 6 \sqrt{v})\) and v is the function of the integral \((4 v^{2} + 2 sin v + 6 \sqrt{v})\)

\(\int (4 v^{2} + 2 sin v + 6 \sqrt{v})\; dv \\ 4 \int v^{2} dv + 2 \int sin v dv + 6 \int v^{\frac{1}{2}} \\ \frac{4 v^{3}}{3} + 2 (- cos\; v) + 6 (\frac{v ^{\frac{3}{2}}}{\frac{3}{2}}) + C \\ \frac{4}{3} v^{3} – 2 cos\; v + 4 v ^{\frac{3}{2}} + C \\ Where\; C\; is\; the\; constant\)

Question 18:

By the method of inspection obtain an integral of the \(sec\; \Theta (tan\; \Theta + sec\; \Theta)\)

Answer:

Integral of \(sec\; \Theta (tan\; \Theta + sec\; \Theta)\) and \(\Theta\) is the function of the integral \(sec\; \Theta (tan\; \Theta + sec\; \Theta)\)

\(\int sec\; \Theta (tan\; \Theta + sec\; \Theta) d\Theta \\ \int (sec\; \Theta\; tan\; \Theta + sec ^{2}\; \Theta) d\Theta \\ sec\; \Theta\; + tan\; \Theta + K \\ Where\; K\; is\; the\; constant\)

Question 19:

By the method of inspection obtain an integral of the \(\frac{sec ^{2}\; \Theta}{cosec ^{2}\; \Theta}\)

Answer:

Integral of \(\frac{sec ^{2}\; \Theta}{cosec ^{2}\; \Theta}\) and \(\frac{3 – 2 sin\; \Theta}{cos ^{2}\; \Theta}\)c is the function of the integral \(\frac{sec ^{2}\; \Theta}{cosec ^{2}\; \Theta}\)

\(\int \frac{sec ^{2}\; \Theta}{cosec ^{2}\; \Theta} d\Theta \\ \int \frac{\frac{1}{cos ^{2}\; \Theta}}{\frac{1}{sin ^{2}\; \Theta}} d\Theta \\ \int \frac{sin ^{2}\; \Theta}{cos ^{2}\; \Theta} d\Theta \\ \int (tan ^{2}\; \Theta) d\Theta \\ \int (sec ^{2}\; \Theta – 1) d\Theta \\ \int sec ^{2}\; \Theta d\Theta – \int 1 d\Theta \\ tan \Theta – \Theta + K \\ Where\; K\; is\; the\; constant\)

Question 20:

By the method of inspection obtain an integral of the \(\frac{3 – 2 sin\; \Theta}{cos ^{2}\; \Theta}\)

Answer:

Integral of \(\frac{3 – 2 sin\; \Theta}{cos ^{2}\; \Theta}\) and \(\frac{3 – 2 sin\; \Theta}{cos ^{2}\; \Theta}\) is the function of the integral \(\frac{3 – 2 sin\; \Theta}{cos ^{2}\; \Theta}\)

\(\int \frac{3 – 2 sin\; \Theta}{cos ^{2}\; \Theta} d\Theta \\ \int (\frac{3}{cos ^{2}\; \Theta} – \frac{2 sin\; \Theta}{cos ^{2}\; \Theta}) d\Theta \\ 3 \int sec ^{2}\; \Theta\; d\Theta – 2 \int tan\; \Theta \; sec\; \Theta d\Theta \\ 3 tan\; \Theta – 2 sec\; \Theta + K \\ Where\; K\; is\; the\; constant\)

Question 21:

Which of the following below is an integral of \(\sqrt{u} + \frac{1}{\sqrt{u}}\):

\((a) \frac{1}{3} u^{\frac{1}{3}} + 2 u^{\frac{1}{2}} + C \\ (b) \frac{2}{3} u^{\frac{2}{3}} + \frac{1}{2} u^{2} + C \\ (c) \frac{2}{3} u^{\frac{3}{2}} + 2 u^{\frac{1}{2}} + C \\ (d) \frac{3}{2} u^{\frac{3}{2}} + \frac{1}{2} u^{\frac{1}{2}} + C\)

Answer:

Integral of \(\sqrt{u} + \frac{1}{\sqrt{u}}\) and u is the function of the integral \(\sqrt{u} + \frac{1}{\sqrt{u}}\)

\(\int \sqrt{u} + \frac{1}{\sqrt{u}} du \\ \int u ^{\frac{1}{2}} du + \int u^{- \frac{1}{2}} du \\ \frac{u ^{\frac{3}{2}}}{\frac{3}{2}} + \frac{u ^{\frac{1}{2}}}{\frac{1}{2}} + C \\ \frac{3}{2} u ^{\frac{3}{2}} + 2 u ^{\frac{1}{2}} \\ Option\; c\; is\; correct\)

Question 22:

\(Suppose\; \frac{d}{dr} f (r) = 4 r^{3} – \frac{3}{r^{4}},\; in\; such\; a\; way\; that\; f (2) = 0,\; then\; f (r)\; is\\ (a) r^{4} + \frac{1}{r ^{3}} – \frac{129}{8} (b) r^{3} + \frac{1}{r ^{4}} + \frac{129}{8} (c) r^{4} + \frac{1}{r ^{3}} + \frac{129}{8} (d) r^{3} + \frac{1}{r ^{4}} – \frac{129}{8}\)

Answer:

Given,

\(\frac{d}{dr} f (r) = 4 r^{3} – \frac{3}{r^{4}} \\ Integral\; of\; 4 r^{3} – \frac{3}{r^{4}} = f (r) \\ f (r) = \int 4 r^{3} – \frac{3}{r^{4}}\; dr \\ f (r) = 4 \int r^{3} dr – 3 \int (r ^{- 4}) dr \\ f (r) = 4 \frac{r ^{4}}{4} – 3 \frac{r ^{- 3}}{- 3} + K \\ f (r) = r ^{4} + \frac{1}{r ^{3}} + K \\ And, \\ f (2) = 0 \\ f (2) = 2 ^{4} + \frac{1}{2 ^{3}} + K = 0 \\\) \(16 + \frac{1}{8} + K = 0 \\ K = – \frac{129}{8} \\ f (r) = r ^{4} + \frac{1}{r ^{3}} – \frac{129}{8} \\ Option\; (a)\; is\; correct\)

 

Related Links
NCERT Solutions Class 7 Maths NCERT Solutions Class 10 Maths
NCERT Solutions Class 11 Maths Ncert Books
NCERT Solutions Class 11 Physics NCERT Solutions Class 11 Chemistry
NCERT Solutions Class 11 Biology NCERT Solutions Class 6 Maths
NCERT Solutions Class 12 Biology NCERT Solutions for Class 5 Maths
NCERT Solutions for Class 4 Maths NCERT Solutions Class 8 Maths