Ncert Solutions For Class 12 Maths Ex 7.5

Ncert Solutions For Class 12 Maths Chapter 7 Ex 7.5

Question 1:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{u}{(u + 1) (u + 2)}\)

Answer 1:

Suppose, \(\frac{u}{(u + 1) (u + 2)} = \frac{A}{u + 1} + \frac{B}{u + 2} \\ => u = A (u + 2) + B (u + 1)\)

Equate the coefficients of u and the constants on both the sides, we get,

A + B = 1

2 A + B = 0

On solving, we get,

A = – 1 and B = 2

\(\frac{u}{(u + 1) (u + 2)} = \frac{- 1}{u + 1} + \frac{2}{u + 2} \\ => \int \frac{u}{(u + 1) (u + 2)} \;du = \frac{- 1}{u + 1} + \frac{2}{u + 2} \;du \\ = – log \left | u + 1 \right | + 2 log \left | u + 2 \right | + C \\ = log \left ( u + 2 \right ) ^{2} – log \left | u + 1 \right | + C \\ = log \frac{(u + 1) ^{2}}{(u + 1)} + C\)

Question 2:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{1}{u ^{2} – 9}\)

Answer 2:

Suppose, \(\frac{1}{(u + 3) (u – 3)} = \frac{A}{u + 3} + \frac{B}{u – 3} \\ 1 = A (u – 3) + B (u + 3)\)

Equate the coefficients of u and the constants on both the sides, we get,

A + B = 0

– 3 A + 3 B = 1

On solving, we get

\(A = – \frac{1}{6} \; and\; B = \frac{1}{6} \\ \frac{1}{(u + 3) (u – 3)} = \frac{- 1}{6 (u + 3)} + \frac{1}{6 (u – 3)} \\ => \int \frac{1}{u ^{2} – 9} \;du = \int \left ( \frac{- 1}{6 (u + 3)} + \frac{1}{6 (u – 3)} \right ) \;du \\ = – \frac{1}{6} log \left | u + 3 \right | + \frac{1}{6} log \left | u – 3 \right | + C \\ = \frac{1}{6} log \left | \frac{(u – 3)}{(u + 3)} \right | + C\)

Question 3:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{3 u – 1}{(u – 1) (u – 2) (u – 3)}\)

Answer 3:

Suppose, \(\frac{3 u – 1}{(u – 1) (u – 2) (u – 3)} = \frac{A}{(u – 1)} + \frac{B}{(u – 2} + \frac{C}{(u – 3)} \\ 3 u – 1 = A (u – 2) (u – 3) + B (u – 1) (u – 3) + C (u – 1) (u – 2) ….. (1)\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + B + C = 0

– 5 A – 4 B – 3 C = 1

6 A + 3 B + 2 C = – 1

On solving, we get,

A = 1, B = – 5, and C = 4

\(\frac{3 u – 1}{(u – 1) (u – 2) (u – 3)} = \frac{1}{(u – 1)} – \frac{5}{(u – 2} + \frac{4}{(u – 3)} \\ \int \frac{3 u – 1}{(u – 1) (u – 2) (u – 3)} \;du = \int \left \{ \frac{1}{(u – 1)} – \frac{5}{(u – 2} + \frac{4}{(u – 3)} \right \} \;du \\ = log \left | u – 1 \right | – 5 log \left | u – 2 \right | + 4 log \left | u – 3 \right | + C\)

Question 4:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{u}{(u – 1) (u – 2) (u – 3)}\)

Answer 4:

Suppose, \(\frac{u}{(u – 1) (u – 2) (u – 3)} = \frac{A}{(u – 1)} + \frac{B}{(u – 2} + \frac{C}{(u – 3)} \\ u = A (u – 2) (u – 3) + B (u – 1) (u – 3) + C (u – 1) (u – 2) ….. (1)\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + B + C = 0

– 5 A – 4 B – 3 C = 1

6 A + 3 B + 2 C = 0

On solving, we get,

\(A = \frac{1}{2}, \;B = – 2 \;and \;C = \frac{3}{2} \\ \frac{u}{(u – 1) (u – 2) (u – 3)} = \frac{1}{2 (u – 1)} – \frac{2}{(u – 2} + \frac{3}{2 (u – 3)} \\ \int \frac{u}{(u – 1) (u – 2) (u – 3)} \;du = \int \left \{ \frac{1}{2 \;(u – 1)} – \frac{2}{(u – 2)} + \frac{3}{2 (u – 3)} \right \} \;du \\ = \frac{1}{2}\; log \left | u – 1 \right | – 2 log \left | u – 2 \right | + \frac{3}{2} log \left | u – 3 \right | + C\)

Question 5:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{2 u}{u ^{2} + 3 u + 2}\)

Answer 5:

Suppose, \(\frac{2 u}{u ^{2} + 3 u + 2} = \frac{A}{(u + 1)} + \frac{B}{(u + 2)} \\ 2 u = A (u + 2) + B (u + 1) …. (1)\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + B = 2

2 A + B = 0

On solving, we get,

A = – 2 and B = 4

\(\frac{2 u}{(u + 1) (u + 2)} = \frac{- 2}{(u + 1)} + \frac{4}{(u + 1)} \\ \int \frac{2 u}{(u + 1) (u + 2)} \;du = \int \left \{ \frac{4}{(u + 1)} – \frac{2}{(u + 1)}\right \} \;du \\ = 4 log \left | u + 2 \right | – 2 log \left | u + 1 \right | + C\)

Question 6:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{1 – u ^{2}}{u (1 – 2 u)}\)

Answer 6:

\(\frac{1 – u ^{2}}{u (1 – 2 u)}\) is not a proper fraction.

Dividing (1 – u 2) by u (1 – 2 u), we get,

\(\frac{1 – u ^{2}}{u (1 – 2 u)} = \frac{1}{2} + \frac{1}{2} \left ( \frac{2 – u}{u (1 – 2 u)} \right ) \\ Suppose,\; \frac{2 – u}{u (1 – 2 u)} = \frac{A}{u} + \frac{B}{(1 -2 u)} \\ (2 – u) = A (1 – 2 u) + B u ……. (1)\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

– 2 A + B = – 1

And A = 2

On solving, we get,

A = 2 and B = 3

\(\frac{2 – u}{u (1 – 2 u)} = \frac{2}{u} + \frac{3}{(1 -2 u)} \\ Using\; in\; equation\; (1), we\; get, \\ \frac{1 – u ^{2}}{u (1 – 2 u)} = \frac{1}{2} + \frac{1}{2} \left \{ \frac{2}{u} + \frac{3}{(1 -2 u)} \right \} \\ = \frac{u}{2} + log \left | u \right | + \frac{3}{2 (- 2)}\; log \left | 1 – 2u \right | + C \\ = \frac{u}{2} + log \left | u \right | – \frac{3}{4}\; log \left | 1 – 2u \right | + C\)

Question 7:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{u}{(u ^{2} + 1) (u – 1)}\)

Answer 7:

Suppose, \(\frac{u}{(u ^{2} + 1) (u – 1)} = \frac{A u + B}{(u ^{2} + 1)} + \frac{C}{u – 1} \\ u = (A u + B) (u – 1) + C (u^{2} + 1) \\ u = A u ^{2} – A u + B u – B + C u^{2} + C\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + C = 0

– A + B = 1

– B + C = 0

On solving, we get,

\(A = – \frac{1}{2},\; B = \frac{1}{2}, and\; C = \frac{1}{2} \\ Using\; equation\; (1),\; we\; get\; \\ \frac{u}{(u ^{2} + 1) (u – 1)} = \frac{\left ( – \frac{1}{2} u + \frac{1}{2} \right )}{(u ^{2} + 1)} + \frac{\frac{1}{2}}{(u – 1)} \\\) \(\int \frac{u}{(u ^{2} + 1) (u – 1)} \;du = – \frac{1}{2} \int \frac{u}{(u ^{2} + 1)} \;du + \frac{1}{2} \int \frac{1}{(u ^{2} + 1)} + \frac{1}{2} \int \frac{1}{2} \int \frac{1}{u – 1} \;du \\ = – \frac{1}{4} \int \frac{2 u}{(u ^{2} + 1)} + \frac{1}{2} tan ^{- 1} u + \frac{1}{2} log \left | u – 1 \right | + C \\ \int \frac{2 u}{(u ^{2} + 1)} \;du, let\; (u ^{2} + 1) = z => 2u\; du = dz \\ \int \frac{2 u}{(u ^{2} + 1)} \;du = \int \frac{dz}{z} = log \left | z \right | = log\; \left | u^{2} + 1 \right | \\ \int \frac{u}{(u ^{2} + 1) (u – 1)} \;du = – \frac{1}{4} log \left | (u ^{2} + 1) \right | + \frac{1}{2} tan ^{- 1}u + \frac{1}{2} log \left | u – 1 \right | + C \\ = \frac{1}{2} log \left | u – 1 \right | – \frac{1}{4} log \left | (u ^{2} + 1) \right | + \frac{1}{2} tan ^{- 1}u + C\)

Question 8:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{u}{(u – 1)^{2} (u + 2)}\)

Answer 8:

\(\frac{u}{(u – 1) c^{2} (u + 2)} = \frac{A}{(u – 1)} + \frac{B}{(u – 1) ^{2}} + \frac{C}{u + 2} \\ u = A (u – 1) (u + 2) + B (u + 2) + C (u – 1)^{2} \\\)

Putting u = 1, we get,

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + C = 0

A + B – 2 C = 1

– 2 A + 2 B + C = 0

On solving, we get,

\(A = \frac{2}{9},\; B = \frac{1}{3} \;and\; C = – \frac{2}{9}\) \(\frac{u}{(u – 1)^{2} (u + 2)} = \frac{2}{9 \;(u – 1)} + \frac{1}{3 \;(u – 1) ^{2}} – \frac{2}{9 (u + 2)} \\ \int \frac{u}{(u – 1)^{2} (u + 2)} \;du = \frac{2}{9} \int \frac{1}{(u – 1)} \;du + \frac{1}{3} \int \frac{1}{(u – 1) ^{2}} \;du – \frac{2}{9} \int \frac{1}{(u + 2)} \;du \\ = \frac{2}{9} log\; \left | u – 1 \right | + \frac{1}{3} \left ( \frac{- 1}{u – 1} \right ) – \frac{2}{9} log \left | u + 2 \right | + C \\ = \frac{2}{9} log\; \left | \frac{u – 1}{u + 2} \right | – \frac{1}{3 (u – 1)} + C\)

Question 9:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{3 u + 5}{u^{3} – u^{2} – u + 1}\)

Answer 9:

\(\frac{3 u + 5}{u^{3} – u^{2} – u + 1} = \frac{3 u + 5}{(u – 1)^{2} (u + 1)} \\ Suppose,\; \frac{3 u + 5}{(u – 1)^{2} (u + 1)} = \frac{A}{(u – 1)} + \frac{B}{(u – 1)^{2}} + \frac{C}{(u + 1)} \\ 3 u + 5 = A (u – 1) (u + 1) + B (u + 1) + C (u – 1) ^{2} \\ 3 u + 5 = A (u^{2} – 1) + B (u + 1) + C (u^{2} + 1 – 2 u) \\\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + C = 0

B – 2 C = 3

– A + B + C = 5

On solving, we get,

B = 4

\(A = – \frac{1}{2} \;and\; C = \frac{1}{2} \\ \frac{3 u + 5}{(u – 1)^{2} (u + 1)} = \frac{- 1}{2 (u – 1)} + \frac{4}{(u – 1)^{2}} + \frac{1}{2 (u + 1)} \\ \int \frac{3 u + 5}{(u – 1)^{2} (u + 1)} \;du = – \frac{1}{2} \int \frac{1}{(u – 1)} \;du + 4 \int \frac{1}{(u – 1)^{2}} \;du + \frac{1}{2} \int \frac{1}{(u + 1)} \;du \\ = – \frac{1}{2} log\; \left | u – 1 \right | + 4 \left ( \frac{- 1}{u – 1} \right ) + \frac{1}{2} log \left | u + 1 \right | + C \\ = \frac{1}{2} log \left | \frac{u + 1}{u – 1} \right | – \frac{4}{(u – 1)} + C\)

Question 10:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{2 u – 3}{(u^{2} – 1) (2u + 3)}\)

Answer 10:

\(\frac{2 u – 3}{(u^{2} – 1) (2u + 3)} = \frac{2 u – 3}{(u + 1)(u – 1)(2u + 3)}\)

Suppose, \(\frac{2 u – 3}{(u^{2} – 1) (2u + 3)} = \frac{A}{(u + 1)} + \frac{B}{(u – 1)} + \frac{C}{(2u + 3)} \\ (2u – 3) = A\; (u – 1)(2 u + 3) + B\; (u + 1) (2 u + 3) + C\; (u + 1) (u – 1) \\ (2u – 3) = A\; (2 u^{2} + u – 3) + B\; (2 u^{2} + 5u + 3) + C\; (u^{2} – 1) \\ (2u – 3) = (2A + 2B + C) u^{2} + (A + 5B)u + (- 3A + 3B – C)\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

2A + 2B + C = 1

A + 5B = 2

– 3A + 3B – C = – 3

On solving, we get,

\(\frac{2 u – 3}{(u + 1)(u – 1)(2u + 3)} = \frac{5}{2 (u + 1)} – \frac{1}{10 (u – 1)} – \frac{24}{5 (2u + 3)} \\ \frac{2 u – 3}{(u + 1)(u – 1)(2u + 3)} = \frac{5}{2} \int \frac{1}{(u + 1)} \;du – \frac{1}{10} \int \frac{1}{ (u – 1)} \;du – \frac{24}{5} \int \frac{1}{ (2u + 3)} \;du \\ = \frac{5}{2} log\; \left | u + 1 \right | – \frac{1}{10} log\; \left | u – 1 \right | – \frac{24}{5 \times 2} log\; \left | 2u + 3 \right | + C \\ = \frac{5}{2} log\; \left | u + 1 \right | – \frac{1}{10} log\; \left | u – 1 \right | – \frac{12}{5} log\; \left | 2u + 3 \right | + C\)

 

 

Question 11:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{5 u}{(u + 1) (u^{2} – 4)}\)

Answer 11:

\(\frac{5 u}{(u + 1) (u^{2} – 4)} = \frac{5 u}{(u + 1)(u + 2)(u – 2)} \\ Suppose,\; \frac{5 u}{(u + 1)(u + 2)(u – 2)} = \frac{A}{(u + 1)} + \frac{B}{(u + 2)} + \frac{C}{(u – 2)} \\ 5u = A (u + 2)(u – 2) + B (u + 1)(u – 2) + C (u + 1)(u + 2) …. (1)\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + B + C = 0

– B + 3C = 5 and

– 4A – 2B + 2C = 0

On solving, we get,

\(A = \frac{5}{3}, B = – \frac{5}{2} \;and\; C = \frac{5}{6} \\ \frac{5 u}{(u + 1)(u + 2)(u – 2)} = \frac{5}{3 (u + 1)} – \frac{5}{2 (u + 2)} + \frac{5}{6 (u – 2)} \\ \int \frac{5 u}{(u + 1)(u + 2)(u – 2)} \;du = \frac{5}{3} \frac{1}{(u + 1)} \;du – \frac{5}{2} \frac{1}{(u + 2)} \;du + \frac{5}{6} \frac{1}{(u – 2)} \;du \\ = \frac{5}{3} log\; \left | u + 1 \right | – \frac{5}{2} log\; \left | u + 2 \right | + \frac{5}{6} log\; \left | u – 2 \right | + C\)

Question 12:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{u^{3} + u + 1}{u^{2} – 1}\)

Answer 12:

\(\frac{u^{3} + u + 1}{u^{2} – 1}\) is not a proper fraction.

So, dividing (u3 + u + 1) by u2 – 1, we get,

\(\frac{u^{2} + u + 1}{u^{2} – 1} = u + \frac{2u + 1}{u^{2} – 2} \\ Suppose,\; \frac{2u + 1}{u^{2} – 2} = \frac{A}{(u + 1)} + \frac{B}{(u – 1)} \\ 2u + 1 = A (u – 1) + B (u + 1) ….. (1)\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + B = 2

– A + B = 1

On solving, we get,

\(A = \frac{1}{2} \;and\; B = \frac{3}{2} \\ \frac{u^{2} + u + 1}{u^{2} – 1} = u + \frac{1}{2 (u + 1)} + \frac{3}{2 (u – 1)} \\ Integrating\; on\; both\; the\; sides,\; we\; get, \int \frac{u^{2} + u + 1}{u^{2} – 1} \;du = \int u \;du + \frac{1}{2} \int \frac{1}{u + 1} \;du + \frac{3}{2} \frac{1}{(u – 1)} \;du \\ = \frac{u ^{2}}{2} + \frac{1}{2} log\; \left | u + 1 \right | – \frac{3}{2} log\; \left | u – 1 \right | + C\)

Question 13:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{2}{(1 – u)(1 + u ^{2})}\)

Answer 13:

Suppose, \(\frac{2}{(1 – u)(1 + u ^{2})} = \frac{A}{1 – u} + \frac{Bu + C}{1 + u ^{2}} \\ 2 = A (1 + u ^{2}) + (Bu + C)(1 – u) \\ 2 = A + A\; u^{2} + Bu – B\; u^{2} + C – Cu\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A – B = 0

B – C = 0

A + C = 2

On solving, we get,

A = 1, B = 1 and C = 1

\(\frac{2}{(1 – u)(1 + u ^{2})} = \frac{1}{1 – u} + \frac{u + 1}{1 + u ^{2}} \\ \int \frac{2}{(1 – u)(1 + u ^{2})} \;du = \int \frac{1}{1 – u} \;du + \int \int \frac{u}{1 + u ^{2}} \;du + \int \frac{1}{1 + u ^{2}} \;du \\ = – log\; \left | u – 1 \right | + \frac{1}{2} log\; \left | 1 + u^{2} \right | + tan ^{- 1} \;u + C\)

 

 

Question 14:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{3u – 1}{(u + 2)^{2}}\)

Answer 14:

Suppose, \(\frac{3u – 1}{(u + 2)^{2}} = \frac{A}{(u + 2)} + \frac{B}{(u + 2)^{2}} \\ 3u – 1 = A (u + 2) + B\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A = 3

2A + B = – 1

B = – 7

\(\frac{3u – 1}{(u + 2)^{2}} = \frac{3}{(u + 2)} – \frac{7}{(u + 2)^{2}} \\ 3u – 1 = A (u + 2) + B \frac{3u – 1}{(u + 2)^{2}} = 3 \int \frac{1}{(u + 2)} \;du – 7 \int \frac{u}{(u + 2)^{2}} \;du \\ = 3\; log\; \left | u + 2 \right | – 7 \left ( \frac{- 1}{(u\; + \;2)} \right ) + C \\ = 3\; log\; \left | u + 2 \right | + \left ( \frac{7}{(u\; + \;2)} \right ) + C\)

Question 15:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{1}{u^{4} – 1}\)

Answer 15:

\(\frac{1}{u^{4} – 1} = \frac{1}{(u^{2} – 1)(u^{4} + 1)} = \frac{1}{(u + 1) (u – 1)(1 + u^{2})} \\ Suppose,\; \frac{1}{(u + 1) (u – 1)(1 + u^{2})} = \frac{A}{(u + 1)} + \frac{B}{(u – 1)} + \frac{Cu + D}{(u^{2} + 1)} \\ 1 = A (u + 1)(u^{2} + 1) + B (u + 1)(u^{2} + 1) + (Cu + D) (u^{2} – 1) \\ 1 = A (u^{3} + u – u^{2} – 1) + B (u^{3} + u + u^{2} + 1) + Cu^{2} + Du^{2} – Cu – D \\ 1 = (A + B + C) u^{3} + (- A + B + D) u^{2} + (A + B – C)u + (- A + B – D)\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + B + C = 0

– A + B + D = 0

A + B – C = 0

– A + B – D = 1

On solving, we get,

\(A = – \frac{1}{4}, B = \frac{1}{4}, C = 0 \;and\; D = – \frac{1}{2} \\ \frac{1}{u^{4} – 1} = \frac{- 1}{4 (u + 1)} + \frac{1}{4 (u – 1)} – \frac{1}{2 (u^{2} + 1)} \\ \int \frac{1}{u^{4} – 1} \;du = – \frac{1}{4} \int \frac{1}{(u + 1)} \;du + \frac{1}{4} \int \frac{1}{(u – 1)} \;du + \frac{1}{2} \int \frac{1}{(u^{2} + 1)} \\ = – \frac{1}{4} log\; \left | u + 1 \right | + \frac{1}{4} log\; \left | u – 1 \right | – \frac{1}{2} tan^{- 1} \;u + C \\ = \frac{1}{4} log\; \left | \frac{ u – 1}{u + 1} \right | – \frac{1}{2} tan^{- 1} \;u + C\)

Question 16:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{1}{u (u^{m} + 1)}\)

[Hint: multiply denominator and numerator by u n – 1 and put un = z]

Answer 16:

\(\frac{1}{u (u^{m} + 1)}\)

Multiplying denominator and numerator by u n – 1, we get,

\(\frac{1}{u (u^{m} + 1)} = \frac{u ^{m – 1}}{u ^{m – 1}. u (u^{m} + 1)} = \frac{u ^{m – 1}}{u ^{m} (u^{m} + 1)} \\ Suppose,\; u^{m} = z => u ^{m – 1} \;du = dz \\ \int \frac{1}{u (u^{m} + 1)} \;du = \int \frac{u ^{m – 1}}{u ^{m} (u^{m} + 1)} \;du = \frac{1}{m} \int \frac{1}{z (z + z)} \;du \\ Suppose,\; \frac{1}{z (z + z)} = \frac{A}{z} + \frac{B}{(z + 1)} \\ 1 = A (1 + z) + Bz \\\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A = 1 and B = – 1

\(\frac{1}{z (z + z)} = \frac{1}{z} – \frac{1}{(z + 1)} \\ \int \frac{1}{u (u^{m} + 1)} \;du = \frac{1}{m} \int \left \{ \frac{1}{z} – \frac{1}{(z + 1)} \right \} + C \\ = \frac{1}{m} \left [ log\; \left | u^{m} \right | – log\; \left | u^{m} + 1 \right | \right ] + C \\ = \frac{1}{m} log\; \left | \frac{u^{m}}{u^{m} + 1} \right |\)

Question 17:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{cos\; u}{(1 – sin\; u)(2 – sin\; u)}\)

[Hint: Put sin u = z]

Answer 17:

\(\frac{cos\; u}{(1 – sin\; u)(2 – sin\; u)}\)

Suppose, sin u = z => cos u du = dz

\(\int \frac{cos\; u}{(1 – sin\; u)(2 – sin\; u)} \;du = \int \frac{dz}{(1 – z)(2 – z)} \\ Suppose,\; \frac{1}{(1 – z)(2 – z)} = \frac{A}{(1 – z)} + \frac{B}{(2 – z)} \\ 1 = A (2 – z) + B (1 – z)\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

– 2A – B = 0

2A + B = 1

On solving, we get,

A = 1 and B = – 1

\(\frac{1}{(1 – z)(2 – z)} = \frac{1}{(1 – z)} – \frac{1}{(2 – z)} \\ \int \frac{cos\; u}{(1 – sin\; u)(2 – sin\; u)} \;du = \int \left \{ \frac{1}{(1 – z)} – \frac{1}{(2 – z)} \right \} \;dz \\ = – log\; \left | 1 – z \right | + log\; \left | 2 – z \right | + C \\ = log\; \left | \frac{2 – z}{1 – z} \right | + C \\ = log\; \left | \frac{2 – sin\; u}{1 – sin\; u} \right | + C\)

Question 18:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{(u^{2} + 1)(u^{2} + 2)}{(u^{2} + 3)(u^{2} + 4)}\)

Answer 18:

\(\frac{(u^{2} + 1)(u^{2} + 2)}{(u^{2} + 3)(u^{2} + 4)} = 1 – \frac{(4 u^{2} + 10)}{(u^{2} + 3)(u^{2} + 4)} \\ Suppose,\; \frac{(4 u^{2} + 10)}{(u^{2} + 3)(u^{2} + 4)} = \frac{Au + B}{(u^{2} + 3)} + \frac{Cu + D}{(u^{2} + 4)} \\ (4 u^{2} + 10) = (Au + B)(u^{2} + 4) + (Cu + D)(u^{2} + 3) \\ (4 u^{2} + 10) = A u^{3} + 4 Au + B u^{2} + 4 B + C u^{3} + 3 Cu + D u^{2} + 3D \\ (4 u^{2} + 10) = (A + C) u^{3} + (B + D) u^{2} + (4A + 3C) u + (4B + 3D)\)

Equate the coefficients of u3, u2, u and the constants on both the sides, we get,

A + C = 0

B + D = 4

4 A + 3 C = 0

4 B + 3 D = 10

On solving, we get,

A = 0, B = – 2, C = 0 and D = 6

\(\frac{(4 u^{2} + 10)}{(u^{2} + 3)(u^{2} + 4)} = \frac{- 2}{(u^{2} + 3)} + \frac{6}{(u^{2} + 4)} \\ \frac{(u^{2} + 1)(u^{2} + 2)}{(u^{2} + 3)(u^{2} + 4)} = 1 – \left ( \frac{- 2}{(u^{2} + 3)} + \frac{6}{(u^{2} + 4)} \right ) \\ \int \frac{(u^{2} + 1)(u^{2} + 2)}{(u^{2} + 3)(u^{2} + 4)} \;du = \int \left \{ 1 + \frac{2}{(u^{2} + 3)} + \frac{6}{(u^{2} + 4)} \right \} \\ = \int \left \{ 1 + \frac{2}{u ^{2} + (\sqrt{3})^{2}} – \frac{6}{u^{2} + 2^{2}} \right \} \;du \\ = u + 2 \left ( \frac{1}{\sqrt{3}} \;tan ^{- 1} \frac{u}{\sqrt{3}} \right ) – 6 \left ( \frac{1}{2} \;tan ^{- 1} \frac{u}{2} \right ) + C \\ = u + \frac{2}{\sqrt{3}} \;tan ^{- 1} \frac{u}{\sqrt{3}} – 3 \;tan ^{- 1} \frac{u}{2} + C\)

 

 

Question 19:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{2\; u}{(u^{2} + 1)(u^{2} + 3)}\)

Answer 19:

\(\frac{2\; u}{(u^{2} + 1)(u^{2} + 3)}\)

Suppose, u2 = z

2u du = dz

\(\int \frac{2\; u}{(u^{2} + 1)(u^{2} + 3)} \;du = \int \frac{dz}{(z + 1)(z + 3)} …. (1) \\ Suppose,\; \frac{1}{(z + 1)(z + 3)} = \frac{A}{(z + 1)} + \frac{B}{(z + 3)} \\ 1 = A\; (z + 3) + B\; (z + 1) …. (1) \\\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + B = 0

3 A + B = 1

On solving, we get,

\(A = \frac{1}{2} \;and\; B = – \frac{1}{2} \\ \frac{1}{(z + 1)(z + 3)} = \frac{1}{2\; (z + 1)} – \frac{1}{2\; (z + 3)} \\ \int \frac{2\; u}{(u^{2} + 1)(u^{2} + 3)} \;du = \int \left \{ \frac{1}{2\; (z + 1)} – \frac{1}{2\; (z + 3)} \right \} \;dz \\ = \frac{1}{2} log \left | (z + 1) \right | – \frac{1}{2} log \left | (z + 3) \right | + C \\ = \frac{1}{2} log \left | \frac{z + 1}{z + 3} \right | + C \\ = \frac{1}{2} log \left | \frac{u^{2} + 1}{u^{2} + 3} \right | + C\)

Question 20:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{1}{u (u^{4} – 1)}\)

Answer 20:

\(\frac{1}{u (u^{4} – 1)}\)

Multiplying denominator and numerator by u3, we get,

\(\frac{1}{u (u^{4} – 1)} = \frac{u^{3}}{u^{4} (u^{4} – 1)} \\ \int \frac{1}{u (u^{4} – 1)} \;du = \int \frac{u^{3}}{u^{4} (u^{4} – 1)} \;du \\ Suppose,\; u^{4} = t => 4 u^{3} \;du = dz \\ \int \frac{1}{u (u^{4} – 1)} \;du = \frac{1}{4} \int \frac{dz}{z (z – 1)} \\ Suppose,\; \frac{1}{z (z – 1)} = \frac{A}{z} + \frac{B}{z &##8211; 1} \\ 1 = A (z – 1) + Bz ….. (1) \\\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A = – 1 and B = 1

\(\frac{1}{z (z – 1)} = \frac{- 1}{z} + \frac{1}{z – 1} \\ = \int \frac{1}{u (u^{4} – 1)} \;du = \frac{1}{4} \int \left ( \frac{- 1}{z} + \frac{1}{z – 1} \right ) \;dz \\ = \frac{1}{4} \left [ – log\; \left | z \right | + log\; \left | z – 1 \right | \right ] + C \\ = \frac{1}{4} log\; \left | \frac{z – 1}{z} \right | + C \\ = \frac{1}{4} log\; \left | \frac{u^{4} – 1}{u^{4}} \right | + C\)

Question 21:

Obtain an integral (or anti – derivative) of the following rational number \(\frac{1}{(e^{u} – 1)}\)

Answer 21:

\(\frac{1}{(e^{u} – 1)}\)

Suppose, eu = z

eu du = dz

\(\int \frac{1}{(e^{u} – 1)} \;du = \int \frac{1}{z – 1} \times \frac{dz}{z} = \int \frac{1}{z (z – 1)} \;dz \\ Suppose,\; \frac{1}{z (z – 1)} = \frac{A}{z} + \frac{B}{z – 1} \\ 1 = A (z – 1) + Bz\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A = – 1 and B = 1

\(\frac{1}{z (z – 1)} = \frac{- 1}{z} + \frac{1}{z – 1} \\ \int \frac{1}{z (z – 1)} \;du = log\; \left | \frac{z – 1}{z} \right | + C \\ = log\; \left | \frac{e^{u} – 1}{e^{u}} \right | + C\)

Question 22: Which of the following below is an integral of \(\frac{u \;du}{(u – 1)(u – 2)}\)

\((a) log\; \left | \frac{(u – 1)^{2}}{u – 2} \right | + C \\ (b) log\; \left | \frac{(u – 2)^{2}}{u – 2} \right | + C \\ (c) log\; \left | (\frac{(u – 1)}{u – 2}) ^{2} \right | + C \\ (d) log\; \left | (u – 1)(u – 2) \right | + C\)

Answer 22:

\(Suppose,\; \frac{u \;du}{(u – 1)(u – 2)} = \frac{A}{(u – 1)} + \frac{B}{u – 2} \\ u = A (u – 2) + B (u – 1) …. (1)\)

Equate the coefficients of u and the constants on both the sides, we get,

A = – 1 and B = 2

\(\frac{u \;du}{(u – 1)(u – 2)} = \frac{- 1}{(u – 1)} + \frac{2}{u – 2} \\ \int \frac{u \;du}{(u – 1)(u – 2)} \;d= \left \{ \frac{- 1}{(u – 1)} + \frac{2}{u – 2} \right \} \;du \\ = – log\; \left | u – 1 \right | + 2\; log\; \left | u – 2 \right | + C \\ = log\; \left | \frac{(u – 2) ^{2}}{u – 1} \right | + C\)

Hence, option (b) is the correct answer.

 

Question 23: Which of the following below is an integral of \(\int \frac{du}{u (u^{2} + 1)} \;du\)

\((a) log\; \left | u \right | – \frac{1}{2} log\; (u^{2} + 1) + C \\ (b) log\; \left | u \right | + \frac{1}{2} log\; (u^{2} + 1) + C \\ (c) – log\; \left | u \right | + \frac{1}{2} log\; (u^{2} + 1) + C \\ (d) log\; \left | u \right | + \frac{1}{2} log\; (u^{2} + 1) + C \\\)

Answer 23:

\(Suppose,\; \frac{1}{u (u^{2} + 1)} = \frac{A}{u} + \frac{Bu + C}{u^{2} + 1} \\ 1 = A (u^{2} + 1) + (Bu + C) u\)

Equate the coefficients of u2, u and the constants on both the sides, we get,

A + B = 0

C = 0

A = 1

On solving, we get,

A =1, B = – 1, and C = 0

\(\frac{1}{u (u^{2} + 1)} = \frac{1}{u} + \frac{- U}{u^{2} + 1} \\ \int \frac{1}{u (u^{2} + 1)} \;du = \int \left \{ \frac{1}{u} – \frac{u}{u^{2} + 1} \right \} \;du \\ = log\; \left | u \right | – \frac{1}{2} log\; \left | u^{2} + 1 \right | + C\)

Hence, option (a) is the correct answer.

Related Links
Class 11 Maths Ncert Exemplar Solutions Ncert Exemplar Class 11 Biology Pdf
Ncert Books Download Ncert Book Of Class 6Th
Ncert Book Of 8Th Class Ncert Class 8 Science Book Pdf
Ncert Class 9 Science Book Pdf Ncert Science Book Class 10 Pdf Download
11Th Ncert Books Ncert Maths Book Class 11 Solutions Pdf
Ncert Maths Book Class 7 Solutions Pdf Ncert 10th Maths Book