NCERT Solutions for Class 9 Maths Chapter 14 Statistics

NCERT Solutions Class 9 Maths Chapter 14 â€“ CBSE Download Free PDF

*According to the CBSE Syllabus 2023-24, this chapter has been renumbered as Chapter 12.

NCERT Solutions for Class 9 Maths Chapter 14 Statistics are the best ways to strengthen a studentâ€™s skills and knowledge. It contains all the relevant study material that can help them score well in the CBSE examinations. NCERT Solutions Class 9 Chapter 14 Statistics is an important chapter and is included in Class 9 Maths CBSE Syllabus 2023-24. A proper understanding of this chapter will help the students with a few chapters in the higher classes as well.

Download Most Important Questions for Class 9 Maths Chapter â€“ 14 Statistics

Solutions to the questions given in the textbook are provided in the NCERT Solutions for Class 9. The solutions are provided by the subject experts and are accurate. Every question is explained step-wise for a better understanding of the students. They can refer to these solutions for reference purposes. NCERT Solutions are the best guides for students preparing for the final exams. They should go through the solutions after completing every chapter. This will help them analyse their weaknesses and improve on them.

Download the PDF of NCERT Solutions for Class 9 Maths Chapter 14 â€“ Statistics

Â

List of Exercises in Class 9 Maths Chapter 14Â
Exercise 14.1 Solutions 2 Questions
Exercise 14.2 Solutions 9 Questions
Exercise 14.3 Solutions 9 Questions
Exercise 14.4 Solutions 6 Questions

Exercise 14.1 Page: 239

Â 1. Give five examples of data that you can collect from your day-to-day life.

Solution:

Five examples from day-to-day life are

1. The number of students in our class
2. The number of fans in our school
3. Electricity bills of our house for the last two years
4. Election results obtained from television or newspapers
5. Literacy rate figures obtained from Educational Survey

2. Classify the data in Q.1 above as primary or secondary data.

Solution:

Primary data: When the information was collected by the investigator themselves with a definite objective in their mind, the data obtained is called primary data.

Primary data; (i), (ii) and (iii)

Secondary data: When the information was gathered from a source which already had the information stored, the data obtained is called secondary data.

Secondary data; (iv) and (v)

Exercise 14.2 Page: 245

1. The blood groups of 30 students of Class VIII are recorded as follows.

A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O,

A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O.

Represent this data in the form of a frequency distribution table. Which is the most common, and which is the rarest, blood group among these students?

Solution:

Frequency is the number of students having the same blood group. The frequency is represented in the table or the frequency distribution table.

 Blood Group Number of Students (Frequency) A 9 B 6 O 12 AB 3 Total 30

The most common Blood Group is the blood group with the highest frequency: O

The rarest Blood Group is the blood group with the lowest frequency: AB

2. The distance (in km) of 40 engineers from their residence to their place of work was found as follows:
5 Â  Â 3 Â  Â 10 Â  Â 20 Â  Â 25 Â  Â 11 Â  Â 13 Â  Â 7 Â  Â 12 Â  Â 31
19 Â  Â 10 Â  Â 12 Â  Â 17 Â  Â 18 Â  Â 11 Â  Â 32 Â  Â 17 Â  Â 16 Â  Â 2
7 Â  Â 9 Â  Â 7 Â  Â 8 Â  Â 3 Â  Â 5 Â  Â 12 Â  Â 15 Â  Â 18 Â  Â 3
12 Â  Â 14 Â  Â 2 Â  Â 9 Â  Â 6 Â  Â 15 Â  Â 15 Â  Â 7 Â  Â 6 Â  Â 12
Construct a grouped frequency distribution table with class size 5 for the data given above, taking the first interval as 0-5 (5 not included). What main features do you observe from this tabular representation?

Solution:

Since the given data is very large, we construct a grouped frequency distribution table of class size 5. âˆ´, class intervals will be 0-5, 5-10, 10-15, 15-20 and so on. The data is represented in the grouped frequency distribution table as

In the given table, the classes do not overlap. Also, we find that the houses of 36 out of 40 engineers are below 20 km of distance.

3. The relative humidity (in %) of a certain city for a month of 30 days was as follows:
98.1 Â  Â  98.6 Â  Â  99.2 Â  Â  90.3 Â  Â  86.5 Â  Â  95.3 Â  Â  92.9 Â  Â  Â 96.3 Â  Â  Â 94.2 Â  Â  Â 95.1
89.2 Â  Â  92.3 Â  Â  97.1 Â  Â  93.5 Â  Â  92.7 Â  Â  95.1 Â  Â  97.2 Â  Â  Â 93.3 Â  Â  Â 95.2 Â  Â  Â 97.3
96.2 Â  Â  92.1 Â  Â  84.9 Â  Â  90.2 Â  Â  95.7 Â  Â  98.3 Â  Â  97.3 Â  Â  Â 96.1 Â  Â  Â 92.1 Â  Â  Â 89

(i) Construct a grouped frequency distribution table with classes 84 â€“ 86, 86 â€“ 88, etc.

(ii) Which month or season do you think this data is about?

(iii) What is the range of this data?

Solution:

(i) Since the given data is very large, we construct a grouped frequency distribution table of class size 2.

âˆ´, class intervals will be 84-86, 86-88, 88-90, 90-92 and so on. The data is represented in the grouped frequency distribution table as

 Relative humidity (in %) Frequency 84-86 1 86-88 1 88-90 2 90-92 2 92-94 7 94-96 6 96-98 7 98-100 4 Total 30

(ii) The humidity is very high in the given data. Since the humidity is observed to be high during the rainy season, the data here must be about the rainy season.

(iii) The range of a data = The maximum value of the data â€“ minimum value of the data

= 99.2âˆ’84.9

= 14.3

4. The heights of 50 students, measured to the nearest centimetres, have been found to be as follows:
161 Â  Â  150 Â  Â  154 Â  Â  165 Â  Â  168 Â  Â  161 Â  Â  154 Â  Â  162 Â  Â  150 Â  Â  151
162 Â  Â  164 Â  Â  171 Â  Â  165 Â  Â  158 Â  Â  154 Â  Â  156 Â  Â  172 Â  Â  160 Â  Â  170
153 Â  Â  159 Â  Â  161 Â  Â  170 Â  Â  162 Â  Â  165 Â  Â  166 Â  Â  168 Â  Â  165 Â  Â  164
154 Â  Â  152 Â  Â  153 Â  Â  156 Â  Â  158 Â  Â  162 Â  Â  160 Â  Â  161 Â  Â  173 Â  Â  166
161 Â  Â  159 Â  Â  162 Â  Â  167 Â  Â  168 Â  Â  159 Â  Â  158 Â  Â  153 Â  Â  154 Â  Â  159

(i) Represent the data given above by a grouped frequency distribution table, taking the class intervals as 160 â€“ 165, 165 â€“ 170, etc.

(ii) What can you conclude about their heights from the table?

Solution:

(i) The data given in the question can be represented by a grouped frequency distribution table, taking the class intervals as 160 â€“ 165, 165 â€“ 170, etc., as

 Height (in cm) No. of Students (Frequency) 150-155 12 155-160 9 160-165 14 165-170 10 170-175 5 Total 50

(ii) It can be concluded from the given data and the table that 35 students, i.e., more than 50% of the total students, are shorter than 165 cm.

5. A study was conducted to find out the concentration of sulphur dioxide in the air in parts per million (ppm) of a certain city. The data obtained for 30 days is as follows:
0.03 Â  Â  0.08 Â  Â  0.08 Â  Â  0.09 Â  Â  0.04 Â  Â  0.17
0.16 Â  Â  0.05 Â  Â  0.02 Â  Â  0.06 Â  Â  0.18 Â  Â  0.20
0.11 Â  Â  0.08 Â  Â  0.12 Â  Â  0.13 Â  Â  0.22 Â  Â  0.07
0.08 Â  Â  0.01 Â  Â  0.10 Â  Â  0.06 Â  Â  0.09 Â  Â  0.18
0.11 Â  Â  0.07 Â  Â  0.05 Â  Â  0.07 Â  Â  0.01 Â  Â  0.04

(i) Make a grouped frequency distribution table for this data with class intervals as 0.00 â€“ 0.04, 0.04 â€“ 0.08, and so on.

(ii) For how many days was the concentration of Sulphur dioxide more than 0.11 parts per million?

Solution:

(i) The grouped frequency distribution table for the data given in the question with class intervals as 0.00 â€“ 0.04, 0.04 â€“ 0.08, and so on is given below.

 The concentration of sulphur dioxide in the air (in ppm) Frequency 0.00 âˆ’ 0.04 4 0.04 âˆ’ 0.08 9 0.08 âˆ’ 0.12 9 0.12 âˆ’ 0.16 2 0.16 âˆ’ 0.20 4 0.20 âˆ’ 0.24 2 Total 30

(ii) The number of days in which the concentration of sulphur dioxide was more than 0.11 parts per million = 2+4+ 2 = 8

6. Three coins were tossed 30 times simultaneously. Each time the number of heads occurring was noted down as follows:

0 1 2 2 1 2 3 1 3 0

1 3 1 1 2 2 0 1 2 1

3 0 0 1 1 2 3 2 2 0

Prepare a frequency distribution table for the data given above.

Solution:

The frequency distribution table for the data given in the question is given below.

 Number of Heads Frequency 0 6 1 10 2 9 3 5 Total 30

7. The value of Ï€ up to 50 decimal places is given below:

3.14159265358979323846264338327950288419716939937510

(i) Make a frequency distribution of the digits from 0 to 9 after the decimal point.

(ii) What are the most and the least frequently occurring digits?

Solution:

(i) The frequency distribution of the digits from 0 to 9 after the decimal point is given in the table below.

 Digits Frequency 0 2 1 5 2 5 3 8 4 4 5 5 6 4 7 4 8 5 9 8 Total 50

(ii) The digit having the least frequency occurs the least. Since 0 occurs only twice, it has a frequency of 2. âˆ´, the least frequently occurring digit is 0.

The digit with the highest frequency occurs the most. Since 3 and 9 occur eight times, it has a frequency of 8. âˆ´, the most frequently occurring digits are 3 and 9.

8. Thirty children were asked about the number of hours they watched TV programmes in the previous week. The results were found as follows:
1 Â  Â  6 Â  Â  2 Â  Â  3 Â  Â  5 Â  Â 12 Â  Â  5 Â  Â  8 Â  Â  4 Â  Â  8
10 Â  3 Â  Â  4 Â  Â  12 Â  2 Â  Â  8 Â  Â  15 Â  Â 1 Â  Â  17 Â  6
3 Â  Â  2 Â  Â  8 Â  Â  5 Â  Â  9 Â  Â  6 Â  Â  Â 8 Â  Â  7 Â  Â  14 Â  12

(i) Make a grouped frequency distribution table for this data, taking class width 5 and one of the class intervals 5-10.

(ii) How many children have watched television for 15 or more hours a week?

Solution:

(i) The grouped frequency distribution table for the data given in the question, taking class width 5 and one of the class intervals as 5-10, is given below.

 Number of Hours Frequency 0-5 10 5-10 13 10-15 5 15-20 2 Total 30

(ii) From the given table, we can conclude that 2 children watched television for 15 or more hours a week.

9. A company manufactures car batteries of a particular type. The lives (in years) of 40 such batteries were recorded as follows:
2.6 Â  Â  3.0 Â  Â 3.7 Â  Â  3.2 Â  Â  2.2 Â  Â  4.1 Â  Â  3.5 Â  Â  4.5
3.5 Â  Â  2.3 Â  Â 3.2 Â  Â  3.4 Â  Â  3.8 Â  Â  3.2 Â  Â  4.6 Â  Â  3.7
2.5 Â  Â  4.4 Â  Â 3.4 Â  Â  3.3 Â  Â  2.9 Â  Â  3.0 Â  Â  4.3 Â  Â  2.8
3.5 Â  Â  3.2 Â  Â 3.9 Â  Â  3.2 Â  Â  3.2 Â  Â  3.1 Â  Â  3.7 Â  Â  3.4
4.6 Â  Â  3.8 Â  Â 3.2 Â  Â  2.6 Â  Â  3.5 Â  Â  4.2 Â  Â  2.9 Â  Â  3.6
Construct a grouped frequency distribution table for this data, using class intervals of size 0.5 starting from interval 2 â€“ 2.5.

Solution:

The grouped frequency distribution table for the data given in the table, using class intervals of size 0.5 starting from interval 2 â€“ 2.5, is given below.

 Lives of batteries (in years) No. of batteries (Frequency) 2-2.5 2 2.5-3 6 3-3.5 14 3.5-4 11 4-4.5 4 4.5-5 3 Total 40

Exercise 14.3 Page: 258

1. A survey conducted by an organisation for the cause of illness and death among the women between the ages 15 â€“ 44 (in years) worldwide found the following figures (in %):

 S.No. Causes Female fatality rate (%) 1. Reproductive health conditions 31.8 2. Neuropsychiatric conditions 25.4 3. Injuries 12.4 4. Cardiovascular conditions 4.3 5. Respiratory conditions 4.1 6. Other causes 22.0

(i) Represent the information given above graphically.

(ii) Which condition is the major cause of womenâ€™s ill health and death worldwide?

(iii) Try to find out, with the help of your teacher, any two factors which play a major role in the cause in (ii) above being the major cause.

Solution:

(i) The information given in the question is represented below graphically.

(ii) We can observe from the graph that reproductive health conditions are the major cause of womenâ€™s ill health and death worldwide.

(iii) Two factors responsible for the cause in (ii) are

• Lack of proper care and understanding.
• Lack of medical facilities.

2. The following data on the number of girls (to the nearest ten) per thousand boys in different sections of Indian society are given below.

 S.No. Section Number of girls per thousand boys 1. Scheduled Caste (SC)Â Â 940 2. Scheduled Tribe (ST)Â 970 3. Non-SC/STÂ 920 4. Backward districtsÂ 950 5. Non-backward districtsÂ 920 6. RuralÂ 930 7. UrbanÂ 910

(i) Represent the information above by a bar graph.

(ii) In the classroom, discuss what conclusions can be arrived at from the graph.

Solution:

(i) The information given in the question is represented below graphically.

(ii) From the above graph, we can conclude that the maximum number of girls per thousand boys is present in section ST. We can also observe that the backward districts and rural areas have more girls per thousand boys than non-backward districts and urban areas.

3. Given below are the seats won by different political parties in the polling outcome of state assembly elections:

 Political party Â  Â  A Â  Â Â  Â  B Â Â Â  Â  C Â  Â Â  Â  Â D Â  Â Â  Â  Â E Â  Â Â  Â  Â F Â  Â Seats won 75 55 37 29 10 37

(i) Draw a bar graph to represent the polling results.

(ii) Which political party won the maximum number of seats?

Solution:

(i) The bar graph representing the polling results is given below.

(ii) From the bar graph, it is clear that Party A won the maximum number of seats.

4. The length of 40 leaves of a plant is measured correctly to one millimetre, and the obtained data is represented in the following table:

 S.No. Length (in mm) Number of leavesÂ 1. 118 â€“ 126 3 2. 127 â€“ 135 5 3. 136 â€“ 144 9 4. 145 â€“ 153 12 5. 154 â€“ 162 5 6. 163 â€“ 171 4 7. 172 â€“ 180 2

(i) Draw a histogram to represent the given data. [Hint: First, make the class intervals continuous.]

(ii) Is there any other suitable graphical representation for the same data?

(iii) Is it correct to conclude that the maximum number of leaves is 153 mm long? Why?

Solution:

(i) The data given in the question is represented in the discontinuous class interval. So, we have to make it in the continuous class interval. The difference is 1, so taking half of 1, we subtract Â½ = 0.5 from the lower limit and add 0.5 to the upper limit. Then, the table becomes

 S.No. Length (in mm) Number of leaves 1. 117.5 â€“ 126.5 3 2. 126.5 â€“ 135.5 5 3. 135.5 â€“ 144.5 9 4. 144.5 â€“ 153.5 12 5. 153.5 â€“ 162.5 5 6. 162.5 â€“ 171.5 4 7. 171.5 â€“ 180.5 2

(ii) Yes, the data given in the question can also be represented by a frequency polygon.

(iii) No, we cannot conclude that the maximum number of leaves is 153 mm long because the maximum number of leaves are lying in-between the length of 144.5 â€“ 153.5

5. The following table gives the lifetimes of 400 neon lamps.

 Life Time (in hours) Number of Lamps 300 â€“ 400 14 400 â€“ 500 56 500 â€“ 600 60 600 â€“ 700 86 700 â€“ 800 74 800 â€“ 900 62 900 â€“ 1000 48

(i) Represent the given information with the help of a histogram.

(ii) How many lamps have a lifetime of more than 700 hours?

Solution:

(i) The histogram representation of the given data is given below.

(ii) The number of lamps having a lifetime of more than 700 hours = 74+62+48 = 184

6. The following table gives the distribution of students in two sections according to the marks obtained by them.

Represent the marks of the students of both sections on the same graph by two frequency polygons. From the two polygons, compare the performance of the two sections.

Solution:

The class-marks = (lower limit + upper limit)/2

For section A,

 Marks Class-marks Frequency 0-10 5 3 10-20 15 9 20-30 25 17 30-40 35 12 40-50 45 9

For section B,

 Marks Class-marks Frequency 0-10 5 5 10-20 15 19 20-30 25 15 30-40 35 10 40-50 45 1

Representing these data on a graph using two frequency polygon, we get

From the graph, we can conclude that the students of Section A performed better than Section B.

7. The runs scored by two teams, A and B, on the first 60 balls in a cricket match are given below.

Represent the data of both teams on the same graph by frequency polygons.

[Hint: First, make the class intervals continuous.]

Solution:

The data given in the question is represented in the discontinuous class interval. So, we have to make it in the continuous class interval. The difference is 1, so taking half of 1, we subtract Â½ = 0.5 = 0.5 from the lower limit and add 0.5 to the upper limit. Then, the table becomes

 Number of Balls Class Mark Team A Team B 0.5-6.5 3.5 2 5 6.5-12.5 9.5 1 6 12.5-18.5 15.5 8 2 18.5-24.5 21.5 9 10 24.5-30.5 27.5 4 5 30.5-36.5 33.5 5 6 36.5-42.5 39.5 6 3 42.5-48.5 45.5 10 4 48.5-54.5 51.5 6 8 54.5-60.5 57.5 2 10

The data of both teams are represented on the graph below by frequency polygons.

8. A random survey of the number of children of various age groups playing in a park was found as follows:

Draw a histogram to represent the data above.

Solution:

The width of the class intervals in the given data varies.

We know that,

The area of the rectangle is proportional to the frequencies in the histogram.

Thus, the proportion of children per year can be calculated as given in the table below.

 Age (in years) Number of children (frequency) Width of class Length of rectangle 1-2 5 1 (5/1)Ã—1 = 5 2-3 3 1 (3/1)Ã—1 = 3 3-5 6 2 (6/2)Ã—1 = 3 5-7 12 2 (12/2)Ã—1 = 6 7-10 9 3 (9/3)Ã—1 = 3 10-15 10 5 (10/5)Ã—1 = 2 15-17 4 2 (4/2)Ã—1 = 2

Let x-axis = the age of children

y-axis = proportion of children per 1-year interval

9. 100 surnames were randomly picked up from a local telephone directory, and a frequency distribution of the number of letters in the English alphabet in the surnames was found as follows:

(i) Draw a histogram to depict the given information.

(ii) Write the class interval in which the maximum number of surnames lie.

Solution:

(i) The width of the class intervals in the given data is varying.

We know that,

The area of the rectangle is proportional to the frequencies in the histogram.

Thus, the proportion of the number of surnames per 2 letters interval can be calculated as given in the table below.

 Number of letters Number of surnames Width of class Length of rectangle 1-4 6 3 (6/3)Ã—2 = 4 4-6 30 2 (30/2)Ã—2 = 30 6-8 44 2 (44/2)Ã—2 = 44 8-12 16 4 (16/4)Ã—2 = 8 12-20 4 8 (4/8)Ã—2 = 1

(ii) 6-8 is the class interval in which the maximum number of surnames lie.

Exercise 14.4 Page: 269

1. The following number of goals were scored by a team in a series of 10 matches:

2, 3, 4, 5, 0, 1, 3, 3, 4, 3

Find the mean, median and mode of these scores.

Solution:

Mean = Average = Sum of all the observations/Total number of observations

= (2+3+4+5+0+1+3+3+4+3)/10

= 28/10

= 2.8

Median

To find the median, we first arrange the data in ascending order.

0, 1, 2, 3, 3, 3, 3, 4, 4, 5

Here,

Number of observations (n) = 10

Since the number of observations is even, the median can be calculated as

= 3

Mode

To find the mode, we first arrange the data in ascending order.

0, 1, 2, 3, 3, 3, 3, 4, 4, 5

Here,

We find that 3 occurs most frequently (4 times).

âˆ´ Mode = 3

2. In a mathematics test given to 15 students, the following marks (out of 100) are recorded.

41, 39, 48, 52, 46, 62, 54, 40, 96, 52, 98, 40, 42, 52, 60
Find the mean, median and mode of this data.

Solution:

Mean=Average = Sum of all the observations/Total number of observations

= (41+39+48+52+46+62+54+40+96+52+98+40+42+52+60)/15

= 822/15

= 54.8

Median

To find the median, we first arrange the data in ascending order.

39, 40, 40, 41, 42, 46, 48, 52, 52, 52, 54, 60, 62, 96, 98

Here,

Number of observations (n) = 15

Since the number of observations is odd, the median can be calculated as

Median = [(n+1)/2]th observation

= [(15+1)/2]th observation

= (16/2)th observation

= 8th observation

= 52

Mode

To find the mode, we first arrange the data in ascending order.

39, 40, 40, 41, 42, 46, 48, 52, 52, 52, 54, 60, 62, 96, 98

Here,

We find that 52 occurs most frequently (3 times).

âˆ´ Mode = 52

3. The following observations have been arranged in ascending order. If the median of the data is 63, find the value of x.

29, 32, 48, 50, x, x+2, 72, 78, 84, 95

Solution:

Number of observations (n) = 10

Given that Median = 63

Since the number of observations is even, the median can be calculated as

63 = [5th observation+(5+1)th observation]/2

63 = [5th observation+6th observation]/2

63 = (x+x+2)/2

63 = (2x+2)/2

x = 63-1

x = 62

4. Find the mode of 14, 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18.

Solution:

Mode

To find the mode, we first arrange the given data in ascending order.

14,14,14,14,17,18,18,18,22,23,25,28

Here,

We find that 14 occurs most frequently (4 times).

âˆ´ Mode = 14

5. Find the mean salary of 60 workers in a factory from the following table.

Solution:

 Salary (xi) Number of workers (fi) fixi 3000 16 48000 4000 12 48000 5000 10 50000 6000 8 48000 7000 6 42000 8000 4 32000 9000 3 27000 10000 1 10000 Total Î£fiÂ = 60 Î£fixiÂ = 305000

The mean salary is â‚¹5083.33

6. Give one example of a situation in which

(i) the mean is an appropriate measure of central tendency.

(ii) the mean is not an appropriate measure of central tendency, but the median is an appropriate measure of central tendency.

Solution:

(i) Mean marks obtained in the examination

(ii) Runs scored by Mahendra Singh Dhoni in 7 matches are

39, 51, 56, 102, 83, 48, 91

Here,

Mean = (39+51+56+102+83+48+91)/7

= 470/7

= 67.1.

Median,

Arranging in ascending order, we get 39, 48, 51, 56, 83, 91, 102

n = 7

Median = [(n+1)/2]th observation

= ( (7+1)/2)th observation

= (8/2)th observation

= 4th observation

= 56

NCERT Solutions for Class 9 Maths Chapter 14

Statistics is a discipline that belongs to applied mathematics, dealing with the collection, organisation, interpretation, analysis and presentation of data. If Statistics is applied to a scientific, industrial, or social problem, one should begin with a statistical model or a statistical population to be studied.

Statistical methods are mathematical models, formulas and techniques that are used in the statistical research of raw research data.

Explore more about Statistics and learn how to solve various kinds of problems only onÂ NCERT Solutions for Class 9 Maths. It is also one of the best academic resources to revise for Class 9 Maths exams.

Key Features of NCERT Solutions for Class 9 Maths Chapter 14 â€“ Statistics

• The solutions are provided by the subject experts.
• NCERT Solutions for Class 9 Maths Chapter 14 â€“ Statistics will help the students score well in the CBSE examinations.
• The answers to the questions provided are accurate.
• All the questions mentioned in the textbook can be found along with the solutions in the NCERT Solutions Maths Class 9.

The expert faculty team of members have designed the solutions in an easily understandable language to improve the problem-solving abilities of the students. For a more clear idea about Statistics, students can refer to the study materials available at BYJUâ€™S.

Â

Disclaimer:

Dropped Topics â€“Â 14.1 Introduction, 14.2 Collection of data, 14.3 Presentation of data, 14.5 Measure of central tendency and 14.6 Summary.

Frequently Asked Questions on NCERT Solutions for Class 9 Maths Chapter 14

Q1

What are the key features of NCERT Solutions for Class 9 Maths Chapter 14?

NCERT Solutions for Class 9 Maths Chapter 14 provides solutions to all the exercise questions in the NCERT Class 9 Maths Chapter 14. They also help students practise tricky questions, which will clear their understanding of the topics.
Q2

How are NCERT Solutions for Class 9 Maths Chapter 14 helpful from a CBSE exam perspective?

NCERT Solutions for Class 9 Maths Chapter 14 are the most popular study materials used by the students to refer for the CBSE exams. Practising these solutions help them to top the board exams and ace the subject. These solutions are devised based on the recently updated CBSE Class 9 Maths syllabus and its guidelines, covering all the crucial topics of the respective chapter.
Q3

What is the meaning of Statistics according to NCERT Solutions for Class 9 Maths Chapter 14?

According to NCERT Solutions for Class 9 Maths Chapter 14, Statistics is the study of the collection, analysis, interpretation, presentation, and organisation of data. In other words, it is a mathematical discipline to collect and summarise data.

1. This is a great aap of study

2. This app is nice for study