Enter your keyword

Degree and Radian Measure Formula

In mathematics, the radian is the standard unit of angular measure. An angle’s measurement in radians is numerically equal to the length of a corresponding arc of a unit circle. The relationship or the connection between the arc length and radius of a circle defines radian of a circle. Degree and radian formula used to convert, degree to radian or radian to degree.

\[\LARGE Radian=\frac{Arc\;Length}{Radius\;Length}\]

\[\LARGE Radian=\frac{Degree\times \pi}{180}\]

Here are few Degree Measures and their corresponding Radian Measures – 

$\large 30° = \frac{\pi }{6}$

$\large 45° = \frac{\pi }{4}$

$\large 60° = \frac{\pi }{3}$

$\large 90° = \frac{\pi }{2}$

$\large 120° = \frac{2\pi }{3}$

$\large 135° = \frac{3\pi }{4}$

$\large 150° = \frac{5\pi }{6}$

$\large 180° = \pi$

$\large 210° = \frac{7\pi }{6}$

$\large 225° = \frac{5\pi }{4}$

$\large 240° = \frac{4\pi }{3}$

$\large 270° = \frac{3\pi }{2}$

$\large 300° = \frac{5\pi }{3}$

$\large 315° = \frac{7\pi }{4}$

$\large 330° = \frac{11\pi }{6}$

$\large 360° = 2\pi $

Solved Examples

Question 1:

Convert 220° into radian measure?

Solution:

Given Degree = 220°

Formula is,

Radian =  $\frac{degree \times \pi}{180}$

Radian = $\frac{220 \times \pi}{180}$

Radian = $\frac{11 \times \pi}{9}$

Radian = $3.837$

Related Formulas
Rate of Change FormulaEquation of a Formula
Fahrenheit to Celsius FormulaRectangular Parallelepiped Formula
Skewness FormulaSurface Area of a Cylinder Formula
Infinite Geometric Series FormulaTangent Addition Formula