The concepts covered in NCERT Solutions For Class 6 Maths Chapter 7 Fractions Exercise 7.4 are like and unlike fractions and their comparison. We know that like fractions contain the same denominator whereas unlike fractions contain a different denominator. The exercise-wise problems are solved in a comprehensive manner by the set of expert faculty at BYJU’S. Students can improve their academic performance in the subject by using NCERT Solutions Class 6 Maths Chapter 7 Fractions Exercise 7.4 while solving the textual problems.
NCERT Solutions for Class 6 Maths Chapter 7 Fractions Exercise 7.4
Access NCERT Solutions for Class 6 Chapter 7: Fractions Exercise 7.4
1. Write the shaded portion as a fraction. Arrange them in ascending and descending order using correct sign ‘’ between the fractions:
(c) Show 2 / 6, 4 / 6, 8 / 6 and 6 / 6 on the number line. Put appropriate signs between the fractions given.
5 / 6 ☐ 2 / 6, 3 / 6 ☐ 0, 1 / 6 ☐ 6 / 6, 8 / 6 ☐ 5 / 6
Solutions:
(a) The first circle shows 3 shaded parts out of 8 equal parts. Hence, the fraction is 3 / 8
The second circle shows 6 shaded parts out of 8 equal parts. Hence, the fraction is 6 / 8
The third circle shows 4 shaded parts out of 8 equal parts. Hence, the fraction is 4 / 8
The fourth circle shows 1 shaded part out of 8 equal parts. Hence, the fraction is 1 / 8
The arranged fractions are:
1 / 8 < 3 / 8 < 4 / 8 < 6 / 8
(b) The first square shows 8 shaded parts out of 9 equal parts. Hence, the fraction is 8 / 9
The second square shows 4 shaded parts out of 9 equal parts. Hence, the fraction is 4 / 9
The third square shows 3 shaded parts out of 9 equal parts. Hence, the fraction is 3 / 9
The fourth square shows 6 shaded parts out of 9 equal parts. Hence, the fraction is 6 / 9
The arranged fractions are:
3 / 9 < 4 / 9 < 6 / 9 < 8 / 9
(c) Each unit length should be divided into 6 equal parts to represent the fractions 2 / 6, 4 / 6, 8 / 6 and
6 / 6 on number line. These fractions can be represented as follows:
5 / 6 > 2 / 6
3 / 6 > 0
1 / 6 < 6 / 6
8 / 6 > 5 / 6
2. Compare the fractions and put an appropriate sign.
(a) 3 / 6 ☐ 5 / 6
(b) 1 / 7 ☐ 1 / 4
(c) 4 / 5 ☐ 5 / 5
(d) 3 / 5 ☐ 3 / 7
Solutions:
(a) Here both fractions have the same denominators. So, the fraction with the greater numerator is the highest factor
∴ 3 / 6 < 5 / 6
(b) Multiply by 4
1 / 7 = (1 × 4) / (7 × 4)
= 4 / 28
Multiply by 7
1 / 4 = (1 × 7) / (4 × 7)
= 7 / 28
Here 4 < 7
∴ 1 / 7 < 1 / 4
(c) Here both fractions have the same denominators. So, the fraction with the greater numerator is the highest factor
∴ 4 / 5 < 5 / 5
(d) Here both numerators are the same. So, the fraction having less denominator will be the highest factor
∴ 3 / 7 < 3 / 5
3. Make five more such pairs and put appropriate signs.
Solutions:
(a) 5 / 8 < 6 / 8
Here, the denominators are the same. So, the fraction having greater numerator is the highest factor
(ii) 5 / 8 > 2 / 8
Here, the denominators are the same. So, the fraction having greater numerator is the highest factor
(iii) 6 / 13 > 6 / 18
Here, the numerators are the same. So, the fraction having lesser denominator will be the highest factor
(iv) 5 / 25 > 3 / 25
Here, the denominators are the same. So, the fraction having greater numerator is the highest factor
(v) 9 / 50 < 9 / 45
Here, the numerators are the same. So, the fraction having lesser denominator will be the highest factor
4. Look at the figures and write ‘<’ or ‘>’, ‘=’ between the given pairs of fractions.
(a) 1 / 6 ☐ 1 / 3
(b) 3 / 4 ☐ 2 / 6
(c) 2 / 3 ☐ 2 / 4
(d) 6 / 6 ☐ 3 / 3
(e) 5 / 6 ☐ 5 / 5
Solutions:
(a) Here, the numerators are the same. So, the fraction having lesser denominator is greater
∴ 1 / 6 < 1 / 3
(b) 3 / 4 = (3 × 3) / (4 × 3)
= 9 / 12
2 / 6 = (2 × 2) / (6 × 2)
= 4 / 12
Between 4 / 12, 9 / 12
Both fractions have the same denominators. So, the fraction having greater numerator will be greater
∴ 9 / 12 > 4 / 12
3 / 4 > 2 / 6
(c) Here, the numerators are the same. So, the fraction having lesser denominator is greater
∴ 2 / 3 > 2 / 4
(d) We get 6 / 6 = 1 and 3 / 3 = 1
So, 6 / 6 = 3 / 3
(e) Here, the numerators are the same. So, the fraction having lesser denominator is greater
∴ 5 / 6 < 5 / 5
5. How quickly can you do this? Fill appropriate sign. ( ‘<’, ‘=’, ‘>’)
(a) 1 / 2 ☐ 1 / 5
(b) 2 / 4 ☐ 3 / 6
(c) 3 / 5 ☐ 2 / 3
(d) 3 / 4 ☐ 2 / 8
(e) 3 / 5 ☐ 6 / 5
(f) 7 / 9 ☐ 3 / 9
(g) 1 / 4 ☐ 2 / 8
(h) 6 / 10 ☐ 4 / 5
(i) 3 / 4 ☐ 7 / 8
(j) 6 / 10 ☐ 3 / 5
(k) 5 / 7 ☐ 15 / 21
Solutions:
(a) Here, the numerators are the same. So, the fraction having lesser denominator is greater
∴ 1 / 2 > 1 / 5
(b) 2 / 4 = 1 / 2 and 3 / 6 = 1 / 2
∴ 2 / 4 = 3 / 6
(c) 3 / 5 = (3 × 3) / (5 × 3)
= 9 / 15
2 / 3 = (2 × 5) / 3 × 5)
= 10 / 15
Here, between 9 / 15 and 10 / 15 both have the same denominators. Hence, the fraction having greater numerator will be greater.
∴ 3 / 5 < 2 / 3
(d) Here, 2 / 8 = 1 / 4
As, 3 / 4 and 1 / 4 have the same denominators. Hence, the fraction having greater numerator will be greater
∴ 3 / 4 > 2 / 8
(e) Here, the denominators are the same. So, the fraction having greater numerator will be greater
∴ 3 / 5 < 6 / 5
(f) Here, the denominators are the same. So, the fraction having greater numerator will be greater
∴ 7 / 9 > 3 / 9
(g) We know 2 / 8 = 1 / 4
Hence, 1 / 4 = 2 / 8
(h) 6 / 10 = (3 × 2) / (5 × 2)
= 3 / 5
Between 3 / 5 and 4 / 5
Both have the same denominators. So, the fraction having greater numerator will be greater
∴ 6 / 10 < 4 / 5
(i) 3 / 4 = (3 × 2) / (4 × 2)
= 6 / 8
Between 6 / 8 and 7 / 8
Both have same denominators. So, the fraction having greater numerator will be greater
∴ 3 / 4 < 7 / 8
(j) 6 / 10 = (3 × 2) / (5 × 2)
= 3 / 5
∴ 6 / 10 = 3 / 5
(k) 5 / 7 = (5 × 3) / (7 × 3)
= 15 / 21
∴ 5 / 7 = 15 / 21
6. The following fractions represent just three different numbers. Separate them into three groups of equivalent fractions, by changing each one to its simplest form.
(a) 2 / 12 (b) 3 / 15 (c) 8 / 50 (d) 16 / 100 (e) 10 / 60 (f) 15 / 75
(g) 12 / 60 (h) 16 / 96 (i) 12 / 75 (j) 12 / 72 (k) 3 / 18 (l) 4 / 25
Solutions:
(a) 2 / 12 = (1 × 2) / (6 × 2)
= 1 / 6
(b) 3 / 15 = (1 × 3) / (5 × 3)
= 1 / 5
(c) 8 / 50 = (4 × 2) / (25 × 2)
= 4 / 25
(d) 16 / 100 = (4 × 4) / (25 × 4)
= 4 / 25
(e) 10 / 60 = (1 × 10) / (6 × 10)
= 1 / 6
(f) 15 / 75 = (1 × 15) / (5 × 15)
= 1 / 5
(g) 12 / 60 = (1 × 12) / (5 × 12)
= 1 / 5
(h) 16 / 96
= (1 × 16) / (6 × 16)
= 1 / 6
(i) 12 / 75 = (4 × 3) / (25 × 3)
= 4 / 25
(j) 12 / 72 = (1 × 12) / 6 × 12)
= 1 / 6
(k) 3 / 18 = (1 × 3) / (6 × 3)
= 1 / 6
(l) 4 / 25
Totally there are 3 groups of equivalent fractions.
1 / 6 = (a), (e), (h), (j), (k)
1 / 5 = (b), (f), (g)
4 / 25 = (c), (d), (i), (l)
7. Find answers to the following. Write and indicate how you solved them.
(a) Is 5 / 9 equal to 4 / 5?
(b) Is 9 / 16 equal to 5 / 9?
(c) Is 4 /5 equal to 16 / 20?
(d) Is 1 / 15 equal to 4 / 30?
Solutions:
(a) 5 / 9, 4 / 5
Convert these fractions into like fractions
5 / 9 = (5 / 9) × (5 / 5)
= 25 / 45
4 / 5 = (4 / 5) × (9 / 9)
= 36 / 45
∴ 25 / 45 ≠ 36 / 45
Hence, 5 / 9 is not equal to 4 / 5
(b) 9 / 16, 5 / 9
Convert into like fractions
9 / 16 = (9 / 16) × (9 / 9)
= 81 / 144
5 / 9 = (5 / 9) × (16 / 16)
= 80 / 144
∴ 81 / 144 ≠ 80 / 144
Hence, 9 / 16 is not equal to 5 / 9
(c) 4 / 5, 16 / 20
16 / 20 = (4 × 4) / (5 × 4)
= 4 / 5
∴ 4 / 5 = 16 / 20
Hence, 4 / 5 is equal to 16 / 20
(d) 1 / 15, 4 / 30
4 / 30 = (2 × 2) / (15 × 2)
= 2 / 15
∴ 1 / 15 ≠ 4 / 30
Hence, 1 / 15 is not equal to 4 / 30
8. Ila read 25 pages of a book containing 100 pages. Lalita read 2 / 5 of the same book. Who read less?
Solutions:
Total number of pages a book has = 100 pages
Lalita read = 2 / 5 × 100 = 40 pages
Ila read = 25 pages
∴ Ila read less than Lalita.
9. Rafiq exercised for 3 / 6 of an hour, while Rohit exercised for 3 / 4 of an hour. Who exercised for a longer time?
Solutions:
Rafiq exercised = 3 / 6 of an hour
Rohit exercised = 3 / 4 of a hour
3 / 6, 3 / 4
Convert these into like fractions
3 / 6 = (3 × 2) / (6 × 2)
= 6 / 12
3 / 4 = (3 × 3) / (4 × 3)
= 9 / 12
Clearly, 9 / 12 > 6 / 12
∴ 3 / 4 > 3 / 6
Therefore, Rohit exercised for a longer time than Rafiq.
10. In a class A of 25 students, 20 passed with 60% or more marks; in another class B of 30 students, 24 passed with 60% or more marks. In which class was a greater fraction of students getting 60% or more marks?
Solutions:
Total number of students in Class A = 25
Students passed in first class in Class A = 20
Hence, fraction = 20 / 25
= 4 / 5
Total number of students in Class B = 30
Students passed in first class in Class B = 24
Hence, fraction = 24 / 30
= 4 / 5
∴ An equal fraction of students passed in first class in both the classes
Also, explore –
NCERT Solutions for Class 6 Maths Chapter 7
This app is very good for study and this app is very helpful to us thank you so much for inviting this app
yes you are right this app was very very very good and helpful for study and I wish that all students of India can learn with this APP
This app is so good
This app is very helpful thanks
This app is very nice i downlod this app about 7-8 months . I am doing my school homework by this app . Thank you so much for making this app. Keep it up I like this app.
i like this aap so much
Very nice app for me and I wish all the kids all over the world should use this app ,well done and keep it up.
nice app