# Logarithm Formula

Logarithms are the opposite phenomena of exponential like subtraction is the inverse of addition process, and division is the opposite phenomena of multiplication. Logs “undo” exponentials.

#### Trivial Identities

$\large \log _{b} (1) = 0; \; because \; b^{0}=1; \; b> 0$

$\large \log _{b} (b) = 1; \; because \; b^{1}=b$

#### Basic Logarithm Formulas

$\large \log _{b} (xy) = \log _{b}(x) + \log _{b}(y)$

$\large \log _{b}\left ( \frac{x}{y} \right ) = \log _{b}(x) – \log _{b}(y)$

$\large \log_{b}(x^{d})= d \log_{b}(x)$

$\large \log_{b}(\sqrt[y]{x})= \frac{\log_{b}(x)}{y}$

$\large c\log_{b}(x)+d\log_{b}(y)= \log_{b}(x^{c}y^{d})$

#### Changing the Base

$\large \log_{b}a = \frac{\log_{d}(a)}{\log_{d}(b)}$

$\large \log_{b} (a+c) = \log_{b}a + \log_{b}\left ( 1 + \frac{c}{a} \right )$

$\large \log_{b} (a-c) = \log_{b}a + \log_{b}\left ( 1 – \frac{c}{a} \right )$

#### Exponents

$\large x^{\frac{\log(\log(x))}{\log(x)}} \; = \; \log(x)$

 More topics in Logarithm Formula Natural Log Formula Change of Base Formula Exponential Growth Formula
 Related Formulas Margin of Error Formula Prism Formula Percentile Formula Perimeter of Rhombus Formula Relative Standard Deviation Formula Percentage Decrease Formula Poisson Distribution Formula Sum of Cubes Formula